
2

FIRST YEAR

B.Sc

Dr.B

BOTANY

Microbial Diversity, Algae and Fungi

SEMESTER-I

MBEOKAB OPEN U

UNIVE

WCATION AT YOUR

BS113 BOT-E

DOORSTE?

" We may forgo material benefits of civilization, but we
cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent..

HYDERABAD

2022

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

BLOCK/Unit

BLOCK-I

Unit-1

Unit-2:

Unit-3:

Unit-4

Unit-5

Unit-6:

Unit-7

Unit-8

BLOCK-II VIRUSES, BACTERIA & CYANOBACTERIA

Unit-9

Unit-10 :

Origin of life

Unit-11:

ORIGIN OF LIFE, MICROBIAL DIVERSITY

Unit-12

Geological Time Scale

BLOCK-II ALGAE & LICHENS

Brief Account of Archaebacteria, Actinomycetes,
Chlamydiae and Mycoplasma

Viruses
Bacteria

CONTENTS

Cyanobacteria

BLOCK- IV FUNGI

Title

Life history of algae

General account of Algae

Lichens

General account of Fungi

Life history of Fungi

Crop diseases

Page

10-14

15-22

25

27-44

45-67

68-79

81

83-99

100-120

121-130

131-132

133-155

156-181

182-216

V

FIRST YEAR
B.Sc

BOTANY SEMESTER-I
Bryophyta, Pteridophyta,

Gymnosperms and Paleobotany

SVERSITY

MREDKAK OPEN UNIVE

|BS213 BOYI-E

"We may forgo material benefits of civilization, but we

cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent.

2018

HYDERABAD
Dr. B.R. AMBEDKAR OPEN UNIVERSITY

-Dr. B.R. Ambedkar

wKUit

am-4

BRYOPHYTA

BIOCK-II PTERIDOPHYTA

unit-12

General |Characters and C Classification of Bryophyta Life History of Marchantia. Anthoceros and Funaria
Evolution of Sporophyte in Bryophyta

General Characters and Classfication of Pteridophyta
ife History of Rhynia, Lyeopodium Equisetum and Marsilea

Pinus

CONTENTS

General Characters and Classification of Gymnosperms

Gnetum

BLOCK-IV PALAEO BOTANY

Title

Palaco botany : Fossils

Lyginopteris

Williansonia

Stelar Evolution and Heterospory and Seed Habit in Pieridophytes 102-112
BLOCK-III GYMNOSPERMS

Page

3-8

9-31

32-38

39

4|-49

S0-101

113

||5-127

128-146

147-162

163

165-168

169-174

175-178

BOTANY BS313BOT-E

B.Sc
SECOND YEAR SEMESTER-III

BOTANY

Plant Anatomy and Taxonomy

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the
highest education to the fullest extent...”

-Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2018

CONTENTS

BLOCK-I: ANATOMY 1

Unit-1 : Meristems and Tissues 3

Unit-2 : Internal structure of leaf 33

Unit-3: Primary structure of stem and root 46

BLOCK-II: SECONDARY GROWTH & WOOD ANATOMKY 65

Unit-4 : Secondary growth-Normal and Anomalous 67

Unit- 5: Anatomy of stem & root. 77

Unit-6 : Wood structure & Properties 89

BLOCK-3: PLANT TAXONOMY 97

Unit - 7: Principles of Plant taxonomy & Nomenclature 99

Unit - 8: Systems of Classification 108

Unit - 9: Recent trends in Plant Taxonomy 126

BLOCK-4: SYSTEMATIC TAXONOMY 143

Unit- 10 : Salient features & Economic importance of Polypetalae. 145

Unit- 11: Salient features & Economic importance of gamopetalae. 164

Unit- 12: Salient features & Economic importance of 181

 Monochlamydae and monocotyledons.

Model question paper 199

“ We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest extent
as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2019

BS 413 BOT-E

B.Sc
SECOND YEAR SEMESTER-IV

BOTANY

DEVELOPMENTAL BIOLOGY AND
MEDICINAL BOTANY

CONTENTS

BLOCK / Unit Title Page

Block:I Developmental Biology 1

Unit-1 Microsporogenesis and Male Gametophyte Development 3-7

Unit-2 Megasporogenesis and Female Gametophyte Development 8-15

Unit-3 Polination 16-23

Block:II Embryology and Palynology 25

Unit-4 Endosperm 27-32

Unit-5 Embryo 33-38

Unit-6 Palynology 39-53

Block:III Ethnomedicine and Common Medicinal Plants 55

Unit-7 Ethnomedicine 57-60

Unit-8 Traditional Medicinal Systems 61-75

Unit-9 Plants in primary Health Care 76-89

Block:IV Modern Medicine 91

Unit-10 Traditional Medicine Vs Modern Medicine 93-106

Unit-11 Pharmacognosy 107-114

Unit-12 Plant Crude Drugs 115-130

v

“ We may forgo material benefits of civilization, but we
cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent....

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2019

UG 405 SEE (1) BOT-E

B.Sc
SECOND YEAR SEMESTER-IV

BOTANY

SKILL ENHANCEMENT ELECTIVE COURSE-SEE-1

BIOFERTILIZERS TECHNOLOGY

V

CONTENTS

BLOCK / Unit Title Page

Block :I BIOFERTLIZERS-TYPES OF BIOINOCULANTS 1

Unit-1. Nitrogen Fixing Bio- Fertilizers 3-16

Unit-2. Phosphate Solubilizing Bio-Fertilizers 17-24

Unit-3. Phosphate Mobilizing Biofertilizers - VAM 25-35

Unit-4. Bio Fertilizers For Zinc and Silicate 36-41
Solubilisation and Plant Growth Promoting Rhizobacteria

Block :II BIOFERTLIZERS-TYPES OF TECHNOLOGY 43

Unit - 5. Large Scale Production 45-54

Unit - 6 Biofertilizers - Sustainable Agriculture 55-65

Unit - 7 Biofertilizers - Low Cost Technologies 66-71

Unit - 8 Biofertilizers - Microbial Technology 72-83

“ We may forgo material benefits of civilization, but we
cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent....

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2019

BS405 SEE (2) BOT-E

B.Sc
SECOND YEAR SEMESTER-IV

BOTANY

SKILL ENHANCEMENT ELECTIVE COURSE-SEE-2

FLORICULTURE

CONTENTS

BLOCK / Unit Title Page

Block :I Introduction, Turf Management, and Production 1
Technology for cut and Loose Flowers in Floriculture

Unit-1. Introduction, Scope and Importance of Floriculture 3-13

Unit-2. Landscaping and Turf Management 14-32

Unit-3. Protected Floriculture : Production Technology for Cut/Loose Flowers 33-53

Unit-4. Production Technology for Cut and Loose Flowers 54-69

Block :II Biotechnology, Disease Management, Value addition in Flower 71
Crops and Computer Technology in Floriculture

Unit - 5. Application of Biotechnology in Flower Crops 73-86

Unit - 6 Pest and Disease Management and Post Harvest 87-109
Techniques of Flower Crops

Unit - 7 Value Addition in Flower Crops 110-124

Unit - 8 Computer Technology in Floriculture 125-135

v

THIRD YEAR

B.Sc

BOTANY

SEMESTER-V

CELL BIOLOGY AND GENETICS

MBEDKA OPEN
YOUR

BS 513 BOT-E|

KVERSITY *

0ORSTI}

« We may forgo material benefits of civilization, but we cannot forgo our right
and opportunity to reap the benefits of the highest education to the fullest extent

as the education is the greatest material benefit"

2023

Dr. B.R. AMBEDKAR OPEN UNIVERSITYö
HYDERABAD

-Dr. B.R. Ambedkar

BLDCK /Unit

Block:l Cell Biology

Unit 2

Unit 3

Unit 4

Unit 5

Unit-6

Block:III

Block:1l Chromosomes and Cell Divison

Unit-7

Unit-9

Block:/V

Unít-10

Unit-1|

Unit-12

Nucleus

Ullra Sructure of Plat el|

Nuclcic Acd,

Chromones

Eztra Nsclcar (GeIOMC

Ccll Divion

Geneties

Mendelisn

CONTENTS

Linkage and Crossing (Over

Titte

Genciic Code and Proein Synthesis

Mutatiorns
Mutations, Gene Organisation and Expression, Genetic Engineering

Gene Oryanisation

Genctíc ngincering
Model ()ucstion Paper

3-14

15-1%

19-)

31

33-45

46-50

5162

63

65-40

81-91

92-14

105

J07-119

120-131

132-142

144-144

“ We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest extent
as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

BS 513 BOT DSE (A) -E

B.Sc
THIRD YEAR SEMESTER-V

BOTANY

CROP PRODUCTION

CONTENTS

BLOCK / Unit Title Page

Block:I Soil and Soil Fertility 1

Unit-1 Agricultural Meteorology 3-17

Unit-2 Soils 18-30

Unit-3 Manures and Fertilizers 31-39

Block:II Tillage and Weed Control 41

Unit-4 Tilth and Tillage 43-55

Unit-5 Weeds and Weed Control 56-66

Unit-6 Cropping Systems 67-77

Block:III Crop Production - I 79

Unit-7 Cereals and Millets 81-126

Unit-8 Oil seeds 127-155

Unit-9 Pulses 156-175

Block:IV CROP PRODUCTION - II 177

Unit-10 Cash Crops 179-205

Unit-11 Spices 206-228

Unit-12 Fruits and Nuts 229-267

Model Question Paper 268-269

v

“ We may forgo material benefits of civilization, but we cannot forgo our right
and opportunity to reap the benefits of the highest education to the fullest extent

as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

BS 513 BOT DSE (B) -E

B.Sc
THIRD YEAR SEMESTER-V

BOTANY

PLANT TISSUE CULTURE
AND

GENETIC ENGINEERING

v

CONTENTS

BLOCK / Unit Title Page

Block:I Plant Tissue Culture Introduction and Application 1

Unit-1 Plant Tissue Culture 3-10

Unit-2 Applications of Plant Cell and Tissue Culture 11-15

Unit-3 Clonal Propagation 16-24

Block:II Invitro Culture 25

Unit-4 Invitro Morphogenesis 27-30

Unit-5 Types of Culture 31-39

Unit-6 Organ Culture 40-47

Block:III Gene Cloning 49

Unit-7 r-DNA Technology 51-59

Unit-8 Gene Clonning Vectors 60-66

Unit-9 Methods of Gene Transfer 67-79

Block:IV Transgenic Plants 81

Unit-10 Pathogen Free Plants 83-90

Unit-11 Improved Growth 91-97

Unit-12 Edible Vaccines 98-104

 Model Question Paper 105-106

THIRD YEAR

B.Sc

BOTANY

DISCIPLINE SPECIFIC COMPULSORY CORE COURSE

WEOKAR OPEN JN

PLANT PHYSIOLOGY AND ECOLOGY

(AHON

VERSITY

BS 613 BOT -E

uORSTE?

SEMESTER-VI

" We may forgo r terial benefus of civilization, but we cannot forgo our right and

opportunity to reap the benefits of the highest education to the fullest extent as the
education is the greatest material benefit..

HYDERABAD

2023

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

BLOCK/Unit

Block:I

Unit-1

Unit-2

Unit-3

Block:II

Unit-4

Unit-5

Unit-6

Block:III

Unit-7

Unit-8

Unit-9

Block:IV

Unit-10

Unit-11

Unit-12

Water Plant Relations

Plant Physiology & Plant Bio-Chemistry

Mineral Nutrition

Enzymes.

Photosynthesis

Photosynthesis

Translocation of Solutes

Carbon Assimilation Pathways

Respiration

Plant Respiration and Nitrogen Metabolism

CONTENTS

Nitrogen Metabolism and Nitrogen Fixation

Ecology

Title

Plant Growth, Growth Regulators Dormancy and

Movement Physiology of Flowering

Ecosystem

Ecological Successions

Environmental Pollution

Model Question Paper

Page

1

3-14

15-24

25-35

37

39-49

50-72

73-83

85

87-104

105-121

122-147

149

151-172

173-181

182-193

194-195

THIRD YEAR

B.Sc

BOTANY

BS 613 BOT DSE (CE

DISCIPLINE SPECIFIC ELECTIVE -C
PLANT DISEASE MANAGEMENT

EDUCATLO
MeEDKAR OPEN UNIV

NAT YOUR

AISN

SEMESTER-VI

DoORSTE}

" We may forgo material benefits of civilization, but we cannot forgo our right and

opportunity to reap the benefits of the highest education to the fullest extent as the

education is the greatest material benefit.

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2020

BLOCK/Unit

Unit-1

Block:l Major Diseases of Crop Plants

Unit-2

Unit-3

Block:II

Unit-4

Unit-5

Unit-6

Block:III

Unit-7

Unit-8

Unit-9

Block:IV

Unit-10

Fungal Diseases -I

Fungal Diseases - II

Bacterial, Viral and Mycoplasma Diseases.

Cotton Pests

CONTENTS

Major Insect Pest and Parasitic Plants of Crops

Paddy and Storage Pests

Title

Angiosperm Parasitic Plants

Plant Pest Management

Chemical Methods

Cultural, Physical and Mechanical Methods

Biological Control

Ecological Pest Management Practices

Unit-11 Transgenic Technology for Management of Pests and Diseases.

Unit-12

Model Question Paper

Integrated pest Management

Page

1

3-27

28-51

Concepts and principles of pests and disease management practices 105-110

52-75

77

79-83

84-93

94-102

103

111-117

118-127

129

131-137

138-151

152-161

162-163

BS 613 BOT DSE (D)-E

B.Sc

THIRD YEAR SEMESTER-VI

BOTANY

SEED TECHNOLOGY

“ We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest extent

as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

CONTENTS

Block/Unit Title Pages

Block:I Seed and Seed Storage.. 1-26

Unit-1: Seed structure and dormancy ...1

Unit-2: Seed Storage ...8

Unit-3: physico and biochemical changes during seed storage17

Block:II Seed viability and Seed marketing and treatment 27-51

Unit-4: seed viability and genetic erosion ..27

Unit-5: seed marketing ...33

Unit-6: seed treatment ..43

Block:III Structure of Pollen and Ovule, Seed development............................. 51-76

Unit-7: structure of pollen and ovule ...51

Unit-8: Principles of hybrid seed production ...59

Unit-9: Seed development and heterosis ..65

Block:IV Seed Production, Certification and Seed Banks 77-109

Unit-10: seed testing ...77

Unit-11: seed certification ..91

Unit-12: seed banks ..109

Model Question Paper ... 110

IV

BS114CHE-T

B.Sc.

– I

& -1

 “We may forgo material benefits of civilization, but we

cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

-Dr. B. R. Ambedkar

2017

A

A

BS214CHE-T

B.Sc.
 – 2

 & -2

 “We may forgo material benefits of civilization, but we

cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

 -Dr. B. R. Ambedkar

2018

 1:

IIIA

IVA

IVA

 2:

 3:

BS314CHE-T

B.Sc.
 – 3

 & -3

”

 ”

2018

 :

 VIA

 VIIA

 ’O’

 :

 :

-:

:

 :

BS414CHE-T

B.Sc.
 – 4

 & - 4

 ”

 ”

2019

 :

 d

 f

 :

 :

 :

v

UG405 SEE (CHE1)-E

B.Sc.

CHEMISTRY

SECOND YEAR SEMESTER – 4

SKILL ENHANCEMENT ELECTIVE COURSE - SEE-1

INSTRUMENTATION SKILLS

 “We may forgo material benefits of civilization, but we cannot forgo
our right and opportunity to reap the benefitsof the highest education
to the fullest extent as the education is the greatest material benefit”

-Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2019

CONTENTS

Block - 1 : Instrumentation Skills - 1 1

Unit - 1 : General Principles of Instrumetation 3

Unit - 2 : Principles and Techniques of Gas Analysis 19

Unit - 3 : Principles and Techniques of Ph Meter and Potentiometer 31

Unit - 4 : Principles and Techniques of Conductometry 54

Block-2 : Instrumentation Skills - 2 (Spectroscopy) 71

Unit - 5 : Principles of Spectroscopy 73

Unit - 6 : Principles and Techniques of UV-Visible Spectroscopy 88

Unit - 7 : Principles and Techniques of Colorimetry 106

Unit – 8: Introduction to Infrared Spectroscopy 120

Model question papers 134

v

UG405 SEE (CHE2)-E

B.Sc.

CHEMISTRY

SECOND YEAR SEMESTER – 4

SKILL ENHANCEMENT ELECTIVE COURSE - SEE-2

COSMETIC CHEMISTRY

 “We may forgo material benefits of civilization, but we cannot forgo
our right and opportunity to reap the benefitsof the highest education
to the fullest extent as the education is the greatest material benefit”

-Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2019

CONTENTS

Block - 1 : Cosmetic chemistry - 1 1

Unit - 1 : Drugs and Cosmetics act and rules 3

Unit - 2 : Preservatives, vehicles used in cosmetics 15

Unit - 3 : Stabilizers antioxidants surfactants and humectants 30

Unit - 4 : Organoleptic additives 45

Block-2 : Cosmetic chemistry - 2 53

Unit - 5 : Basic knowledge of skin and hair 55

Unit - 6 : Skin preparations 64

Unit - 7 : Shampoos, conditioners and cosmetics for the face 75

Unit - 8 : Quality control of Cosmetic products 97

Model question papers 106

v

 BS514CHE-T

B.Sc.
 – 5

 & – 5

”

 ”

2020

 1: 1

 2:

 3: 115

 189

 218

BS514CHEDSE(A)-E

B.Sc.
THIRD YEAR SEMESTER – 5

CHEMISTRY

Green Chemistry, Organic Chemistry,
Environmental Chemistry- DSE (A)

 “We may forgo material benefits of civilization, but we cannot forgo
our right and opportunity to reap the benefitsof the highest education
to the fullest extent as the education is the greatest material benefit”

-Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2020

CONTENTS

BLOCK-1: GREEN CHEMISTRY 1

Unit - 1 : Introduction to Green Chemistry 3

Unit - 2 : Principles of Green Chemistry. 7

Unit - 3 : Green synthesis - Some Reactions. 22

BLOCK-2 : ORGANIC CHEMISTRY 31

Unit - 4 : Introduction to Pericyclic Reactions 33

Unit - 5 : Introduction to Assymetric Synthesis 54

Unit - 6 : Structural Elucidation of Organic Compounds

 by Chemical Methods 70

BLOCK-3: ENVIRONMENTAL CHEMISTRY-1 83

Unit – 7: Atmosphere and its components 85

Unit – 8: Air Pollution 97

Unit – 9: Water Pollution 116

BLOCK-4 : ENVIRONMENTAL CHEMISTRY-2 127

Unit – 10: Soil and Sound Pollution. 129

Unit – 11: Chemical toxicology 138

Unit – 12: The state of global environment 149

Model question papers 159

v

BS514CHEDSE(B)-T

B.Sc.
 – 5

 - DSE(B)

”

”

2021

 :

 :

 A

B 65

 :

v

THIRD YEAR
B.Sc.

SEMESTER�6

CHEMISTRY

BS614CHE-E

Inorganie, Organic & Physical Chemistry-6

MBEDKAR ODEN LINNE

EDUCATIO AT YOUR

DoORSTE

"We may forgo mnaterial benefits of civilization, but we cannot forgo

our right and opportunity to reap the benefitsof the highest education

to the fullest extent as the education is the greatest material benefit"

-Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

BLOCK-1: INORGANIC CHEMISTRY

Unit- 1: Metal Carbonyls and Nitrosyls
Unit -2: Non- aqueous Solvents

Unit- 3: Organo metalic

CONTENTS

Unit -4:Alkaloids

BLOCK-2 : ORGANIC CHEMISTRY

Unit -5: Terpenoids

compounds

Unit -6: Introduction to Synthetic strategies
BLOCK-3: PHYSICAL CHEMISTRY

Unit - 7:Introduction and classification of Catalysis.

Unit - 8: Homogeneous Catalysis.

Unit - 9 : Heterogeneous Catalysis.

BLOCK-4 : GENERAL CHEMISTRY

Unit -10: Mass spectroscopy

Unit -11 :H NMR Spectroscopy.

Model question papers

Unit - 12: Introduction to Symmetry

1

3

20

34

47

49

65

77

95

97

105

118

129

131

152

171

185

BS614CHEDSE(C)-T

B.Sc.
 – 6

 - DSE (C)

”

”

2020

 :

 :

 :

 CNS

HIV/AIDS

v

BS614CHEDSE(D)-E

B.Sc.
THIRD YEAR SEMESTER – 6

CHEMISTRY

Polymer Chemistry, Computational Chemistry,
Separation Techniques and Chromatography -

DSE (D)

 “We may forgo material benefits of civilization, but we cannot forgo
our right and opportunity to reap the benefitsof the highest education
to the fullest extent as the education is the greatest material benefit”

-Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2021

CONTENTS

BLOCK-1: POLYMER CHEMISTRY 1

Unit – 1: Introduction, Classification and Crystallinity of Polymers. 3

Unit – 2: Molecular weight determination of Polymers. 13

Unit – 3: Synthesis and applications of Polymers 29

BLOCK-2: COMPUTATIONAL CHEMISTRY &

 MOLECULAR MODELING 43

Unit – 4: Inroduction to computational chemistry 45

Unit – 5: Molecular interactions and Energy calculations 55

Unit – 6: Molecular energy minimisation and molecular dynamics 66

BLOCK-3 : SEPARATION TECHNIQUES & CHROMATOGRAPHY-I 81

Unit - 7 : Separation techniques by solvent extraction 83

Unit - 8 : Introduction and principles of chromatography 102

Unit - 9 : Principles and techniques of paper chromatography 120

BLOCK-4 : CHROMATOGRAPHY - II 141

Unit – 10: Principles and techniques of Thinlayer Chromatography 143

Unit – 11: Principles and techniques of Column Chromatography . 166

Unit – 12: Principles and techniques of GC and HPLC 190

Model question papers 213

v

B.A/B.Com/B.Sc
FIRST YEAR

DESCIPLINE SPECIFIC CORE COURSE-DSC-1

COMPUTER APPLICATIONS
COMPUTER FUNDAMENTALS

E:CATEOR,

SEMESTER-I

MeEDKAR OPEN VNIVE

ÁT YOUR

|BS115 CA-E

ISS3A

"We may forgo material benefits of civilization, but we cannot forgo our
right and opportunity to reap the benefits of the highest education to the

fullest extent as the education is the greatest material benefit"

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2022

BLOCK/ Unit

Unit-1:

BLOCK - I: COMPUTERS IN GENERAL

Unit-2:

Introduction to Computers

Human-Computer interface

Unit-3: Use of Computers in Education and Research

CONTENTS

BLOCK - II: COMPUTER ACCESSERIES AND TECHNOLOGY

Unit-5: Memory

Unit-4: Input & Output Technologies

Unit-6: Inside the Computer

Unit-7: Number Systems

BLOCK- III: HOW COMPUTER WORKS

Unit-8: Binary Arithmetic

Title

Unit-9: Central Processing Unit

BLOCK- IV: EMERGING SOFTVWARE TECHNOLOGIES

Unit-10: Computer Security threats

Unit-11: Introduction to Windows-10

Unit-12: Modern Computing

Page

1

3-14

15-30

31-45

47

49-68

69-85

86-116

117

119-137

138-151

152-164

165

167-188

189-204

205-236

V

“ We may forgo material benefits of civilization, but we

cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent....

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2019

BS 215 CA-E

B.A/B.Com/B.Sc
FIRST YEAR SEMESTER-II

DESCIPLINE SPECIFIC CORE COURSE-DSC-2

COMPUTER APPLICATIONS

PROGRAMMING WITH PYTHON

CONTENTS

Block/Unit Title Page

BLOCK – I: PYTHON FUNDAMENTALS 1

Unit-1: Introduction to Python 3-24

Unit-2: Data Types and Operators in Python 25-56

Unit-3: Control Statements 57-73

BLOCK – II: PYTHON NUMERICAL AND CODE SEQUENCES 75

Unit-4: Arrays in Python 77-106

Unit-5: Strings and Characters 107-122

Unit-6: Functions 123-152

BLOCK – III: SEQUENCES 153

Unit-7: Lists 155-168

Unit-8: Tuples 169-180

Unit-9: Dictionaries 181-194

BLOCK – IV: ADVANCED PYTHON 195

Unit-10: Object Oriented Concepts 197-218

Unit-11: Graphic User Interfaces with Python 219-236

Unit-12: Files and Database 237-251

v

“We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest

extent as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2019

BS 315 CA-E

B.A/B.Com/B.Sc
SECOND YEAR SEMESTER-III

DESCIPLINE SPECIFIC CORE COURSE-DSC-3

COMPUTER APPLICATIONS

PROGRAMMING WITH C AND C++

ii

First Edition : 2019

© 2019, Dr. B. R. Ambedkar Open University, Hyderabad, A.P.

All rights reserved. No part of this book may be reproduced in any form without the
permission in writing from the University.

The text forms part of Dr. B. R. Ambedkar Open University Programme.

Further information on Dr. B. R. Ambedkar Open University courses may be obtained
from the Director (Academic), Dr. B. R. Ambedkar Open University, Road No. 46,
Prof. G. Ram Reddy Marg, Jubliee Hills, Hyderabad- 500033.

Web: www.braou.ac.in

E-mail: info@braou.ac.in

Printed on behalf of Dr. B. R. Ambedkar Open University, Hyderabad by the Registrar.

Lr. No.-

Printed at:
...

Course Design Team (CBCS)

1. Prof. A. Vinaya Babu

2. Prof. S.V.L.Narasimham

3. Prof. V. Vijay Kumar.

4. Prof. B. Vishnu Vardan.

5. Prof. S. Vishwanatha Raju

6. Mr. Vorsu Mallaiah

7. Mr. V. Giridhar.

8. Mr. D. Venkateswarlu

9. Prof. P. Madhusudhan Reddy.

COURSE TEAM

Course Development Team (CBCS)

Editor & Writer
Prof. S.V.L.Narasimham

Associate Editor
Vorsu. Mallaiah

Cover Design
G. V. Swamy

PREFACE

This book on “Programming with C and C++” is prepared for the Under Graduate
Students of B.A./B.Com/B.Sc studying in Dr. B. R. Ambedkar Open University. This course is
offered as a Discipline Specific Core Course (DSC) under CBCS being offered in III Semester
as four credit course. For the convenience of the students, the entire syllabus is organized in to
four blocks. Each block consists of three units. Each block covers a specific area of the subject.
The Units are prepared by the expert in accordance with a format so designed as to enable the
student to read and understand them without much difficulty. Each unit begins with a statement
of the Objectives followed by an introduction, self check exercises in between and at the end
model examination questions intended to test the student’s comprehension of its subject
matter.

“Programming with C and C++” course aims at gaining the knowledge of
Algorithms.Flowchats, installing C++, opening C++ Editor, Editing C and C++ Programs,
Saving source code as .c or .cpp based on whether it is C program or C++ Program, compiling
and executing C or C++ Programs. And also enable the students to gain the knowledge of
using C and C++ in various fields such as Learning, Assessing, teaching. The course explains
each concept with crystal clear examples and images. C and C++ are powerful languages to
learn, understand, programs easily by any beginners or experts in Computer Science. It enabled
all the students to learn basics to advanced features of C and C++ languages. Today, we carry
more computing power on our smart phones and tabs than was available in the early models.
The past decade has seen the revolutionary development in the hardware and computer
infrastructure. The software such as High level languages, Middleware, mobile operating
systems, GPS and deep learning software enhanced the skills of the people in solving the
challenging problems and living with emerging technologies. There is no doubt that the
intelligent computing technologies has helped to change the world. Most websites are hosted
on servers running free software. Even the mighty IBM, Google and Amazon also have their
walls placed in the rock-solid foundations of GNU/Linux and C/C++ software.

This course consists of four blocks and 12 units. Block-1 deals with the Algorithms.
Flowcharts, installing C++, compiling and executing C or C++ Programs, variables, data types,
type conversion. Block-II introduces the flow of control such as sequencing, branching,
iterations, unconditional branching, defining and calling functions, declaring pointers and
pointer arithmetic, creating and performing various operations on strings. Block-III deals with
creating. Reading. Printing one dimensional, two dimensional, and three dimensional arrays,
writing programs using structures, unions and powerful files. Block – IV deals with various
concepts of Object Oriented Programming Paradigms which are classes, objects, abstraction,
encapsulation, inheritance, polymorphism, dynamic binding, templates, user defined data types,
constructors, destructors, garbage management, multiple and multi-level inheritance, operator
overloading, function overloading and overriding, passing objects to functions, this operator,
friend functions, friend classes, static data members and member functions.

The University hopes that this material will help the student to get clear concepts of
the Algorithms, program design with flowcharts. And also writing programs with C and C++
languages which enable the world progress to modern era with the emerging computing
technologies.

iii

iv

CONTENTS

Block/Unit Title Page

BLOCK – I: FUNDAMENTALS OF C 1

Unit-1: Program Design 3-11

Unit-2: Evolution of C Language 12-18

Unit-3: Basics of C Language 19-36

BLOCK – II: CONTROL STRUCTURES 37

Unit-4: Flow of Control 39-51

Unit-5: Functions 52-61

Unit-6: Pointers and Strings 62-76

BLOCK – III: DERIVED DATA TYPES 77

Unit-7: Arrays 79-91

Unit-8: Structures and Unions 92-103

Unit-9: Files 104-115

BLOCK – IV: INTRODUCTION TO C++ 117

Unit-10: Classes and Objects 119-143

Unit-11: Inheritance 144-158

Unit-12: Polymorphism 159-172

Model Question Paper 173-174

v

vi

1

 BLOCK - I

FUNDAMENTALS OF C

This block gives an overall study on the writing algorithms on any kind of problems
to plan the solution of the problems using step wise procedure. It also enables the students
to open the C++ Editor, writing programs, compiling programs, executing programs. This
block deals with program design with flowcharts in terms of graphical representation of the
solution to the problem, and enable the students to write programs on variables, data types,
constants, escape sequences, , statements, various operators in C such as arithmetic,
assignment, relational, conditional, and type casting and type conversion, type coercion,
library functions, and input and output..

The units included in the block are:

Unit-1: Program Design

Unit-2: Evolution of C Language

Unit-3: Basics of C Language

2

3

UNIT- 1: PROGRAM DESIGN

Contents

1.0 Objectives

1.1 Introduction

1.2 Definition and Examples of Algorithm

1.3 Flowcharts

1.4 Structured Programming

1.5 Summary

1.6 Check your progress – Model Answers

1.7 Model Examination Questions

1.8 Glossary

1.0 OBJECTIVES

After studying this unit, you should be able to
 understand concepts and examples of algorithms
 understand Various notations of flowchart
 explain structured programming with examples

1.1. INTRODUCTION

An algorithm is defined as “A precise rule (or set of rules) specifying how to solve some
problem”. Algorithm is not related to any computer language but it is just the sequence of
instructions which give clear idea on how to write the computer code. Every problem that can
be solved using computer can be represented with an algorithm. Algorithms are generally
language independent and hence, the algorithm can be implemented in any programming
language. Flowchart can be used in representing process or planning in any area like business,
education, hospitals. Old languages like BASIC (Beginner’s All Purpose Symbolic Instruction
Code) and FORTRAN (Formula Translation) are examples of unstructured programs where
the flow of steps are sequential as expected and can jump to an unexpected location with
“goto” like statement. Structured languages use blocks of code (group of statements), control
statements(decision making), iterative statements (repeating a block of code) and functions
(module of code for reuse). All most all the modern languages like C, C++, Java, C#, Python
etc. follow the structured programming approach.

1.2 DEFINITION AND EXAMPLES OF ALGORITHM

What is an algorithm?

The definition of an algorithm according to Webster dictionary is “A precise rule (or set of
rules) specifying how to solve some problem”. Solution to a problem should be expressed in
terms of unambiguous steps. The process of defining a solution in terms of discrete steps in a
specific order to get a specific output is referred to as an algorithm. Algorithm is not related to

4

any computer language but it is just the sequence of instructions which give clear idea on how
to write the computer code. Every problem that can be solved using computer can be represented
with an algorithm. Algorithms are generally language independent and hence, the algorithm
can be implemented in any programming language.

Characteristics of an Algorithm

 An algorithm has the following characteristics –

 Output: An algorithm should have one or more desired outputs

 Input: An algorithm may have zero or more well-defined inputs.

 Unambiguous –Each step of an algorithm should be clear and unambiguous.

 Finiteness: Algorithms should terminate after a finite number of steps.

 Language Independent: An algorithm should be independent of programming language.

 Writing Algorithms

Though there are no standards for writing algorithms, generally it is written between start and
stop steps. Some may start it with the definition as “algorithm: <name> (input). The algorithm
may contain basic code constructs like flow-control (if-else), loops (do, for, while) etc which
are generally available in almost every language. The simplest example for an algorithm is
addition of two numbers and display the result. Writing step numbers is optional and can be
omitted if preferred so. Grouping of steps is represented with an indentation (pushed to right
with tabs or spaces) so that all the steps indented with a level belong to the same group.

Step 1 “ START

Step 2 “ Declare three integers x, y, z

Step 3a – Read value and assign it to x

Step 3b – Read value and assign it to y

Step 4 “ Add values of xandy and assign it to z

Step 5 “ print z

Step 7 “ STOP

Here the assignment can be represented with a left arrow()as z x + y

The input variables can be defined in the algorithm definition as well. Now the algorithm can
be rewritten as:

Algorithm: add

Step 1 “ define x, y, z

Step 2a – x read value

Step 2b - y read value

Step 3 “ z x + y

Step 4 “ display z

Step 5 – STOP

Following section presents some basic algorithms which can be used in other larger algorithms
as building blocks.

Example: Finding the maximum of two numbers given by user.

5

Start

Declare variables a and b

Read variables aand b

If a>b

 Display a is the maximum

Else

 Display b is the maximum

Stop

Example: Finding the maximum of three numbers given by user

Start

Declare variables a, b and c

Read variables a, b and c

If a > b

 If a > c

 Display a as maximum

 Else

 Display c as maximum

Else

 If b > c

 Display b as maximum

 Else

 Display c as maximum

Stop

Example: Finding the factorial of a number given by user.

Start

Declare variables n, f and i

Initialize variables

 f 1

 i 1

Read value of n

Repeat the next 2 steps until i = n

 f f*i

 i i+1

Display f

Stop

Example: Finding roots of a quadratic equation ax2+bx+c=0.

6

Start

Declare variables a, b, c, d, r1, r2, rp and ip;

d b2 – 4ac

If d e”0

 r1(-b+”d)/2a

 r2(-b-”d)/2a

 Display r1 and r2 as roots.

Else

 Calculate real and imaginary parts

rpb/2a

ip”(-d)/2a

 Display roots rp+j(ip) and rp-j(ip)

Stop

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is an algorithm?

..

..

..

..

1.3 FLOWCHARTS

Flowchart is another tool to explain the steps or process of a program. A flowchart can be
defined as the “graphical or pictorial representation of an algorithm with the help of different
predefined symbols, and arrows”. The program steps and sequence are represented with different
basic graphic shapes like circle, oval, parallelogram, rectangle, diamond and arrows. While
algorithms are generally used to represent a program, the flowchart can be used anywhere
including program representation. Flowchart can be used in representing process or planning
in any area like business, education, hospitals etc.

7

Symbols Used in Flowchart

Remarks

Terminal - Start / End generally written
inside this oval/circular, round rectangle

Input / Output – What to read or what
to output is written inside this
parallelogram

Process / Instruction steps are written inside
this box

Decision – The condition based on which
a decision is to be taken is written inside
this diamond

Connector / Arrow – The flow from one
step to another step or a group of step is
connected through arrows

Symbol

or or

or

Table 1.1
Example: Print 1 to 10:

Algorithm: Print

Step 1: Start

Step 2: Initialize to 0

Step 3: Increment x by 1

Step 3: Print x

Step 4: If x is less than 10 then go to step 3

Step 5: Stop

Representation with Flowchart:

Fgure 1.1

8

Program Design with Flowcharts:

Example: Finding Maximum of 3 numbers

The algorithm for finding maximum was given previously and its pictorial representation as
flowchart is given below:

Flowchart:

Figure 1.2

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What is flowchart?
...

..

..

1.4 STRUCTURED PROGRAMMING

Structured Programming Approach

Old languages like BASIC (Beginner’s All Purpose Symbolic Instruction Code) and FORTRAN
(Formula Translation) are examples of unstructured programs where the flow of steps are
sequential as expected and can jump to an unexpected location with “goto” like statement.
Unstructured languages lack reusability and readability of the code, which are desirable features
of any good programming language. A structured program can be defined as “a programming
approach in which the program is made as a single structure”. It avoids the possibility of
jumping to an arbitrary instruction inadvertently as is possible in unstructured languages. The
instructions in this approach are executed in a well-definedsequential and structured manner.
All most all the modern languages like C, C++, Java, C#, Python etc. follow the structured
programming approach. Structured languages use blocks of code (group of statements), control

9

statements(decision making), iterative statements (repeating a block of code) and functions
(module of code for reuse). A structured program has single entry point and terminates on exit.
Structured programsare easier to read, understand, debug, maintain. Development of software
also becomes easier and required less effort and time since code can be reused, less prone for
errors and debugging in case of errors is easy.

Consider the following C program for finding the average of even numbers in an array of
integers. The syntax and program are not important here and the focus is only on how a structured
language looks like. However, reading comments (text after // in each line) will help in
understanding the process.

#include <stdio.h>

int main(int argc, char *argv[])// Main method – Entry point

{

 int x[] = {1,2,3,4,5,6,7,8,9,10}; // Array of numbers

 int i, sum=0, cnt=0; // loop, sum and count variables

 float avg; // average variable

 int n = sizeof(x)/sizeof(int); // Find number of elements

 for(i=0; i<n; i++)// Iterate through the array variables

 {

 if(x[i]%2 == 0)// Check if remainder is 0 when divided by 2

 {

 sum += x[i];// Add to sum only if it is divisible by 2

 cnt++;// Increment count

 }

 }

 if(cnt > 0)// Check if there is at least one even numbers

 {

 avg = ((float)sum) /((float) cnt);// Compute average as real

 printf(“Average is: %f\n”, avg);

 }

else// There are no even numbers in the array

 {

printf(“Average cannot be found if there are no elements\n”);

 }

}

In the above program, each pair of curly braces ({}) represent a block. A block will be either
executed or not executed depending on the condition. Within a block there can be other blocks
(nested blocks). The main block contains declarations of some variables needed by the program,
a for loop within which there is an ‘if’ block that checks whether the number is even, and if
even, add it to sum and count is incremented by one. Then there is an ‘if ’ block to print average
if there is at least one number and an ‘else’ block that prints a message if there are no elements.
Once it reaches the end of main block, the program is terminated.

10

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

3. What is structured programming?
..

..

..

1.5 SUMMARY

An algorithm is A precise rule (or set of rules) specifying how to solve some problem.Though
there are no standards for writing algorithms, generally it is written between start and stop
steps. Some may start it with the definition as “algorithm: <name> (input). The algorithm may
contain basic code constructs like flow-control (if-else), loops (do, for, while) etc which are
generally available in almost every language. The simplest example for an algorithm is addition
of two numbers and display the result. Writing step numbers is optional and can be omitted if
preferred so.The program steps and sequence are represented with different basic graphic
shapes like circle, oval, parallelogram, rectangle, diamond and arrows. While algorithms are
generally used to represent a program, the flowchart can be used anywhere including program
representation. Flowchart can be used in representing process or planning in any area like
business, education, hospitals etc… Structured programs are easier to read, understand, debug,
maintain. Development of software also becomes easier and required less effort and time
since code can be reused, less prone for errors and debugging in case of errors is easy.

1.6 CHECK YOUR PROGRESS MODEL ANSWERS

1. A precise rule (or set of rules) specifying how to solve some problem

2. Graphical or pictorial representation of an algorithm with the help of different predefined
symbols, and arrows

3. A programming approach in which the program is made as a single structure.

1.7 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Explain Algorithm with examples.

2. Describe the flowchart with an example.

3. What are the properties of structured programming?

II. Answer the following questions in about 15 lines each

1. Write an algorithm to find sum of numbers from 1 to n

2. Describe various symbols used in flowcharts.

3. Draw the flow chart to find the square of a given number

11

1.8 GLOSSARY

BASIC : Beginner’s All Purpose Symbolic Instruction Code

FORTRAN : Formula Translation

COBOL : Common Business Oriented Language

SNOBOL : StriNg Oriented and symBOlic Language

ALGOL : Algorithmic Language

Prolog : Programming in Logic.

12

UNIT- 2: EVOLUTION OF C LANGUAGE

Contents

2.0 Objectives

2.1 Introduction

2.2 History and features of C Language

2.3 Structure and Execution of C program

2.4 Summary

2.5 Check your progress – Model Answers

2.6 Model Examination Questions

2.7 Glossary

2.0 OBJECTIVES

After studying this unit, you should be able to

 understand history and features of C language

 explain how to write and execute c program

 understand C language program

2.1 INTRODUCTION

C was developed by Dennis Ritchie in 1972 at the Bell Laboratories in the USA, where he was
working on the development of the B language. This was the time when Thompson and
Kernighan developed the Unix operating system and implemented it on a PDP 7 machine and
wanted to move it to a PDP 11 machine. As C became popular, many versions emerged with
different set of library functions. A good programming language should have certain qualities
like simplicity, efficiency, compactness, well-structured etc. C is one of the first languages to
have almost all good features. To avoid confusion, the ANSI (American National Standards
Institute) standardized the language and any extensions can be made by individual vendors
over and above the standards. In the Compilation stage, the preprocessed code is translated to
human readable assembly instructions known as intermediate code which can be understood
by the assembler specific to the machine.

2.2 HISTORY AND FEATURES OF C LANGUAGE

History of C Language

C was developed by Dennis Ritchie in 1972 at the Bell Laboratories in the USA, where he was
working on the development of the B language. This was the time when Thompson and
Kernighan developed the Unix operating system and implemented it on a PDP 7 machine and
wanted to move it to a PDP 11 machine. They envisaged that the effort to port code to another
machine should be minimized as the hardware is ever changing and improving. Therefore,
they took a decision to write as much of the code as possible in a higher level language. They
found that Ritchie was working on a language intended to undertake similar work.

After some modification to make it more suitable for systems work, C was used to write the
first port of Unix. Ever since then, most of Unix has been written in C. Only specific small

13

portions of Unix system, which handles the hardware interface, is written in machine specific
assembler.

C has become a popular language due to its simplicity, power, features and rich set of libraries.
Nowadays, it is one of the main languages used for software development particularly in the
areas of driver, network and system level programming.

As C became popular, many versions emerged with different set of library functions. To avoid
confusion, the ANSI (American National Standards Institute) standardized the language and
any extensions can be made by individual vendors over and above the standards. Hence, any
program that sticks to ANSI standard C, is highly portable across platforms.

Why C Language?

A good programming language should have certain qualities like simplicity, efficiency,
compactness, well structured etc. C is one of the first languages to have almost all good features
like:

 Small set of keywords

 Strong input and output (referred to as I/O) capability

 Well-structured and modular

 Availability of supporting libraries

 User controllable memory management

 System level programming support

 Machine independence

These features make C one of the most popular languages for almost every application. However,
because of its capability to access system resources like memory, storage etc., it is particularly
popular with system programming in the areas of operating system, device drivers, network
drivers, compilers, interpreters, embedded programming and system utilities.

Features of C language

 It is a robust (capable of handling the errors during execution and manage the incorrect
input of data)

 Rich set of built-in functions and operators to express any complex equation/expression.

 Supports assembly language with features of a high-level language which is required by
any system programming language

 C programs are efficient and run faster than many programs written in other languages
due to its optimization of code and closeness to assembly language.

 C is almost portable which means that programs written on one machine can be run on
another machine without modifications.

 Can be extended by way of libraries and defining new data types.

14

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. Who developed C?

..

..

..

2.3 STRUCTURE AND EXECUTION OF C PROGRAM

Structure of C Program

Every C program consists of one or more functions. Each of these functions performs its own
tasks. The results generated by these tasks are passed between functions in several ways. A
special function called main() should be declared which acts as the entry point for the entire
set of functions. The execution of the program starts with the first line of this ‘main’ function
and other functions are called from within main function directly or indirectly. There is no rule
that the function main() should be the first function in a program.

Each statement within the block must be terminated by a semi-colon (;) known as “statement
terminator”. A block of related statements are enclosed within curly braces ({}) which is
known as compound statements. In C semi colon terminates the statements and hence a statement
can span in more than one line, or many statements can be written in a single line.

Structure of a function

Each function of a C program consists of: A heading which includes the function name, list of
arguments passed to that function and return data type declaration. A block that contains local
variable definitions, statements which may include calls to other functions and may contain
return statement.

For example, consider a function that adds two integers and returns the sum as an integer.

int add(int a, int b)

{

 int sum;

 sum = a+b;

 return sum;

}

Here the function add takes two integers a and b as parameters and inside the function it
computes sum as a+b and then it returns the sum.

Once the function structure is clear, the structure of a c program can be given as follows:

Include Statements

Global Definitions

main ()

{

Statements;

15

}

function1 ()

{

 Statements;

}

……

Phases of Execution of a C Program

A program in any high level language is written as a simple text file with appropriate extension.
Then it will be compiled to generate machine code which can be run by the user as a command.
C also follows the same process but it has several stages before the final compilation takes
place. The compilation and execution of a C program is done in four separate stages:

· Preprocessing

· Compilation

· Assembly

· Linking

Consider the simple C program that prints a message

#include <stdio.h>

intmain(void)

{

printf(“Hello, World!”);

return0;

}

In the above code, content within /* and */ is treated as a comment and acts as description for
the reader, but not to the computer. Any line that starts with # symbol is treated as a preprocessor
directive. The ‘main’ is the entry point for any program. The curly braces ({}) denotes the
block of code and the statements are written within a block. When this program is compiled, it
follows the four stages of the compilation process

Preprocessing:In this stage, the text file is parsed and all comments are stripped,broken lines
are joined etc. Then linesthat startwith a # character are interpreted by the preprocessor and
appropriate modifications are made to the code. Preprocessing is a simple macro language
with a small set of syntax and semantics, which helps in reducingcode repetition. In this case
the #include instructs the preprocessor to include the contents from ‘stdio.h’ file into the present
source file at this location.

Compilation: In this stage, the preprocessed code is translated to human readable assembly
instructions known as intermediate code which can be understood by the assembler specific to
the machine.

Assembly:In this stage, an assembler is used to translate the assembly instructions to binary
object code which consists of actual instructions to be run by the target processor.

Linking:The object code consists of machine instructions given in the code, but is doesn’t
contain code from the libraries used in the program and some addresses may not have referenced
properly or the order of code may not be proper (like a referenced function may be defined
after is has been referenced). The linker will rearrange the code after adding the instructions

16

from library functions used by the program. In the example, the linker adds the code for printf
function.

First C Program:

/*

 * First C program that prints Hello, World

 */

#include <stdio.h>

int main(void)

{

printf(“Welcome to C Programming”); // Print the message

return0; // Terminate the program

}

The above simple program that prints just a message “Welcome to C Programming”, has many
constructs that give glimpses of a C program.

First, C has two types of comments, one is known as block comment (also known as multi line
comment), surrounded with /* and */ and the other is line comment which comments all the
text from the // to the end of that line. Comments can be placed anywhere in the code. These
comments improves the readability of the program, but during the preprocessor stage, these
are removed from the actual code before actual compilation starts.

Next there is a preprocessor directive that instructs the preprocessor to include all the text
from the file “stdio.h”. The angular brackets around “stdio.h” indicate that the file resides in
the standard header files directory. If angular brackets are replaced with double quotes (#include
“stdio.h”) then, it searches for this file in the local directory first.

Next there is a function named as “main”, which is the entry point to the program. It takes no
arguments (indicated by void inside the parenthesis) but returns an integer.

Next there is only one block of code for the main, which has two lines in it. The first line uses
a built-in function printf, which is defined in stdio.h file, with the message as argument/
parameter. The second line simply returns a zero to the shell that runs the program. After the
execution of the last line of main block, the program terminates automatically.

Running the Program

If this program is run on Unix/Linux machine, simply issue the command

 cc hello.c

This creates the output file “a.out” which is executable. To run a.out issue the following
command:

./a.out

This produces the “Welcome to C Programming” message on the screen.

Note: On windows machine, GNU C Compiler is recommended for better portability. There is
a myriad of IDEs (Integrated Development Environment) for Windows and Linux like NetBeans,
Eclipse, Microsoft Visual Studio, Dev-C++ and so on. All these IDEs offer an editor for code
editing and compile and run facility from within the IDE. If somebody is interested in the
discontinued 16-bit Turbo C compiler from Borland (not recommended) then the Dev-C++
compiler is the closest to it (https://www.bloodshed.net/dev/devcpp.html).

17

Following is a simple program that illustrates the structure of a C program that has more than
one function.

/* Example program to show basic structure. */

#include <stdio.h>

main ()

{

message ();

}

message ()

{

printf (“HelloWorld!!! \n”);

}

This program has two functions, viz., main() and message(). The entry point is main() where
the first line is a call to message() function. So the control goes to message function, where the
first line is a call to the standard library function printf(), which takes the message string as
parameter and prints it on the screen. Then the printf() returns control back to message where
it returns to main() since there are no more statements to execute. The main also terminates at
this point since it has no more statements to execute. The ‘\n’ in the message moves the cursor
to the next line after printing “Hello World!!!” message. If this new line character (\n) is
missing, the next output will continue in the same line after the message.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2.Write the phases of compiling C program.

..

..

..

2.4 SUMMARY

C was developed by Dennis Ritchie in 1972 at the Bell Laboratories in the USA, where he was
working on the development of the B language. This was the time when Thompson and
Kernighan developed the Unix operating system and implemented it on a PDP 7 machine and
wanted to move it to a PDP 11 machine. C has become a popular language due to its simplicity,
power, features and rich set of libraries. Nowadays, it is one of the main languages used for
software development particularly in the areas of driver, network and system level programming.
As C became popular, many versions emerged with different set of library functions. To avoid
confusion, the ANSI (American National Standards Institute) standardized the language and
any extensions can be made by individual vendors over and above the standards. Hence, any
program that sticks to ANSI standard C, is highly portable across platforms.A program in any
high level language is written as a simple text file with appropriate extension. Then it will be
compiled to generate machine code which can be run by the user as a command. C also follows
the same process but it has several stages before the final compilation takes place.

18

The compilation and execution of a C program is done in four separate stages known as Pre-
processing, compiling, assembling, and linking.C has two types of comments, one is known as
block comment (also known as multi line comment), surrounded with /* and */ and the other
is line comment which comments all the text from the // to the end of that line. Comments can
be placed anywhere in the code. These comments improves the readability of the program, but
during the preprocessor stage, these are removed from the actual code before actual compilation
starts.

2.5 CHECK YOUR PROGRESS MODEL ANSWERS

1. C was developed by Dennis Ritchie in 1972 at the Bell Laboratories in the USA

2. Pre-processing, compilation, assembly, linking

2.6 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Explain various features of C language.

2. Describestructure of C program.

3. Explain the phases of Compiling C program?

II. Answer the following questions in about 15 lines each

1. Describe history of C language

2. Describe comment lines in C.

3. Explain Execution of C program with an example

2.7 GLOSSARY

Compiler : Translates source program into object program

Assembler : Translates source program into assembly language

 Linker : Links pre-compiled library files to source code

Loader : Loads linked files into the processor for execution

.h file : C header files which is pre-compiled

main() : Main function which is executable by C directly.

19

UNIT- 3: BASICS OF C LANGUAGE
Contents

3.0 Objectives

3.1 Introduction

3.2 Character Set, Identifiers and Keywords, Variables

3.3 Data Types, Escape Sequences, Statements

3.4 Operators and Library Functions in C

3.5 Input and Output

3.6 Summary

3.7 Check your progress – Model Answers

3.8 Model Examination Questions

3.9 Glossary

3.0 OBJECTIVES

After studying this unit, you should be able to

 understand character set, identifiers and keywords, variables in C

 describedata types, escape sequences, statements in C language

 explain how to work with various operators and library functions of C

 understand various input and output statements in C

3.1 INTRODUCTION

C and C++ Languages uses the uppercase letters A to Z, the lowercase letters a to z, the digits
0 to 9, and certain special characters as building blocks to form basic program elements. In C,
Identifiers are names given to various program elements, such as variables, constants, functions
and arrays. An identifier should start with a letter (A-Z, a-z) or an underscore (_) followed by
any number of letters and digits, in any order. Generally lowercase letters are used in C for
variables and functions, though not mandatory. C is a case sensitive language. C supports
several data types, to represent real world data in computer. Each data type requires a specific
number of bytes in memory (size). Broadly the data can be classified as whole numbers
(integers), fractional or real numbers, characters and series of characters (strings). C directly
supports all these data types except strings. Strings are supported as a special case of array of
characters. Constants are variables which cannot be altered, which can be integer, float, char
and string. Characters below ASCII value 32 are non-printable control characters. If a string
contains any of these values including double quote, apostrophe, question mark or backslash,
it should be preceded by a backslash to escape it from interpretation which is known as escape
sequence. An escape sequence always begins with a backslash and is followed by one or more
special characters.

3.2 CHARACTER SET, IDENTIFIERS AND KEYWORDS,
VARIABLES

Any language consists of certain alphabets, symbols, words, rules and conventions to follow.
C is no exception for it. It has its own set of characters, variable name rules, data types,
keywords, and so on. Following subsections describe these items.

20

The C Character Set

C uses the uppercase letters A to Z, the lowercase letters a to z, the digits 0 to 9, and certain
special characters as building blocks to form basic program elements (e.g. constants, variables,
operators, expressions). The special characters are listed below which have different meanings
in the C language.

! * + \ “ > # (= : { >

%) ~ ; } / ^ - [: , ?

& _] ‘ . (space)

Most versions of the language also allow certain other characters, such as @ and $, to be
included within strings (sequence of characters like a name) and comments.

Identifiers and Keywords

Identifiers are names given to various program elements, such as variables, constants, functions
and arrays. An identifiershould start with a letter (A-Z, a-z) or an underscore (_) followed by
any number of letters and digits, in any order. Generally lowercase letters are used in C for
variables and functions, though not mandatory. C is a case sensitive language, i.e., an uppercase
letter is not equivalent to the corresponding lowercase letter. If the identifier name consists of
many words, an underscore may be used to separate words for better clarity.

Examples: The following names are valid identifiers.

X y12 sum_1 _temperature this_is_a_very_long_Variable_Name

Names area tax_rateTABLE

The following names are not valid identifiers for the reasons stated.

4_th the first character must be a letter

“x” illegal characters (“)

order-no illegal character (-)

error flag illegal character (space)

An identifier can be arbitrarily long but the significant length depends on the compiler (The
ANSI standard recognizes 31 characters, though some recognize only the first eight characters).
Additional characters are carried along for understandability and convenience of the
programmer.

There are certain reserved words, called keywords that have standard, predefined meanings in
C. These keywords cannot be used as user defined identifiers.

The standard keywords are

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile While

Some compilers may also include some or all of the following keywords:

ada asm entry far fortran huge near pascal

Note that the keywords are all lowercase. Since uppercase and lowercase characters are not
equivalent, it is possible to use an uppercase keyword as an identifier. Normally, however, this
is not done; it is considered a poor programming practice.

21

Variables

A variable is an identifier used to represent a single data item of some specified type of data
within a block of the program. A valueis assigned to the variable at some point in the program
and it can then be accessed or modified later in the program by referring to the variable name.

Declarations

A declaration consists of a data type, followed by one or more variable names, an optional
value assigned to each variable, ending with a semi colon. Each array variable must be followed
by a pair of square brackets, containing a positive integer which specifies the size (number of
elements).

int a, b=20, c;

float root1, root2=1.234;

char flag, text[80];

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1.List any four keywords in C.

..

..

..

3.3 DATA TYPES, ESCAPE SEQUENCES, STATEMENTS

Data Types

C supports several data types, to represent real world data in computer. Each data type requires
a specific number of bytes in memory (size). Broadly the data can be classified as whole
numbers (integers), fractional or real numbers, characters and series of characters (strings). C
directly supports all these data types except strings. Strings are supported as a special case of
array of characters. Since each data type takes a fixed number of bytes in memory, the maximum
value it can represent as binary value is 2n-1 for integers and characters, where n is the number
of bits. A character in C is internally represented as its ASCII (American Standard Code for
Information Interchange), where each character is given a number between 0 and 127. Hence,
a character can be used as a very small number in C which takes only one byte.

Integers are by default signed which means both negative and positive numbers can be
represented. To represent the sign, the first bit of the data is taken and hence only n-1 bits are
available for data. This essentially reduces the maximum value to half but it can be positive or
negative. Size of memory required for an integer in C is compiler dependent which may take 2
or 4 bytes on 16 bit and 32 bit compilers respectively, which makes a c program non-portable
and hence it can be explicitly declared as long (4 bytes always) or short (2 bytes always) by
prefixing “long” or “short” keyword to “int” with a space in between. To represent only unsigned
data (like count of people) the keyword “unsigned” can be prefixed to “int” data type with a
space between these two key words. A proper modifier may be used before the declaration to
avoid loss of data. Further, signed and unsigned are applicable only to integers and hence, int
keyword may be omitted. For example consider the following where declarations in each line
are equivalents.

22

int, signed int, signed

unsigned int, unsigned

signed long int, long int, signed long, long

signed short int, short int, signed short, short

unsigned long int, unsigned long

unsigned short int, unsigned short

The basic data types along with memory requirement and range of values that can be represented
with each type are given below.

Data Description Typical memory Value Range

Type Requirements

int integer quantity 2 or 4 bytes -32768 to 32767 (2 byte)-

(compilerdependent) 2147483648 to 214743648

(4 byte)

short Integer quantity 2 bytes -32768 to 32767 (unsigned)

long Integer quantity 4 bytes -2147483648 to 214743648

unsigned Integer quantity 2/4 bytes 0 to 65535 (2 byte)

0 to4294967295 (4 bytes)

char single character 1 byte -128 to +127

float floating number 4 bytes

double double-precision 8 bytes -1.7x10308 to +1.7 x10308 with up

floating number to 16 decimal digits accuracy

Table 3.1

Constants

Constants are variables which cannot be altered, which can be integer, float, char and string.
Moreover, there are several different kinds of integer and floating-point constants, as discussed
below.

Integer and floating-point constants represent numbers which are generally referred to as
numericconstants. The following rules apply to all numeric-type constants.

Commas and blank spaces cannot be included within the constant.

The constant can be preceded by a minus (-) sign if desired.

The value of constant cannot exceed specified minimum and maximum bounds which depend
on compiler.

Integer Constants

An integer constant is an integer-valued number that consists of a sequence of digits. Integer
constants can be written in three different number systems: decimal (base 10), octal (base8)
and hexadecimal (base 16). If a number starts with a zero, it is treated as octal number and if a
number starts with 0x or 0X, it is treated as hexadecimal number. A suffix of L or l represents
a long number, F or f represents a float number.

23

Example: Some valid numeric constants are shown below.

0 1 2.3f 23L -93 743 528l 32767 0X9A3E
0102

The following decimal constants are written incorrectly for the reasons stated.

12,245 illegal character (,)

36.0 illegal character (.)

10 2 0 30 illegal character (spaces)

192-123 illegal character (-)

Numerical Accuracy

Integer constants are exact quantities but floating-point constants are approximations due to
its representation in binary format. Hence, the floating-point constant 1.0 might be represented
in memory as 0 .99999999even though it might appear as 1.0 when it is displayed. Therefore,
floating-point values cannot be used for certain purposes where exact values are required. For
example, x=1.0, y=1.0/1.0; both values are 1.0 only. However, the expression (x == y) may or
may not result in true, since, the representation may be different for both internally. Hence,
float numbers are never checked for equality but checked for their difference, for example like
in (x-y < 0.0001), where the accuracy required is .0001.

Character Constants

A character constant is a single character, enclosed in apostrophes (single quotes).

Example: Some character constants are shown below.

‘A’ ‘x’ ‘3’ ‘$’ ‘ ‘

The last constant consists of space enclosed in apostrophes.

String Constants

A string constant consists of any number of consecutive characters (including none) enclosed
in (double) quotation marks.

Example: Some string constants are shown below.

“dog” “this is a test string” “street 12-13-24” “Line 1\nLine 2” “”

The fourth example above is printed in two lines since it contains a \n character, which moves
the cursor to the next line before printing “Line2”.

Boolean Constants

In C, value 0 (zero) is considered as false and any other value is considered as true. For
example, following are some values for true: -1, -23456, 1, 12, 1222 …

Symbolic Constants

Symbolic constants are usually defined at the beginning of a program and then may be used
anywhere in the program in place of the numeric constants, character constants, and so on, that
the symbolic constants represent.A symbolic constant is defined by writing.

define name text

where name represents a symbolic name, typically written in uppercase letters, and text
represents the sequence of characters associated with the symbolic name.

24

For example,

#define MAX 100

defines 100 as MAX. Wherever MAX is used, the compiler substitutes 100. Any change in the
value of MAX will automatically reflect throughout the program.

Escape Sequences

Characters below ASCII value 32 are non-printable control characters. If a string contains any
of these values including double quote, apostrophe, question mark or backslash, it should be
preceded by a backslash to escape it from interpretation which is known as escape sequence.
An escape sequence always begins with a backslash and is followed by one or more special
characters. For example, a line feed (newline) is represented as \n. Such escape sequences
always represent single characters, even though they are written in terms of two or more
characters.

The commonly used escape sequences are listed below.

Character Escape Sequence ASCII Value

Bell (alert) \a 007

Backspace \b 008

Horizontal tab \t 009

Vertical tab \v 011

Newline (line feed) \n 010

Form feed \f 012

Carriage return \r 013

Quotation mark(“) \” 034

Apostrophe (‘) \’ 039

Question mark (?) \? 063

Backslash (\) \\ 092

Null \0 000

Table 3.2

Whitespace Characters:These are space (‘ ’), newline(‘\n’), carriage return(‘\r’) and tab(‘\t’).
These characters except the space are nonprintable, but their effect can be felt when printed.
The carriage return moves the curser to the first character of the same line and hence, it
overwrites the line. The newline character moves the curser to the next line but will not move
the current location to the first character and hence, produces a staircase effect. The handling
of \n and \r are system dependent. Whitespace characters generally terminates the reading of
strings in scanf function when %s is used.

Statements

A statement causes the computer to carry out some action. There are three different classes of
statements in C. They are expression statements, compound statements and control statements.

An expression statement consists of an expression followed by a semicolon. The execution of
an expression statement causes the expression to be evaluated. Some examples for expression
statements are shown below.

25

a = 3;

c = a + b;

++i;

printf (“Area = %f”, area);

;// Empty or blank statement

Expressions:The expression consists of a single entity, such as a constant, a variable, an array
element or a reference to a function. It may also consist of some combination of such entities
interconnected by one or more operators. Some simple expressions are shown below.

a + b

x = y

c = a + b

x < = y

x == y

++i

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. Define a statement.

..

..

..

3.4 OPERATORS AND LIBRARY FUNCTIONS IN C

C Language provides various operators to perrom the different operations based on the situations.

Arithmetic Operators

There are five arithmetic operations in C. They are

+ (addition), - (subtraction), * (multiplication), / (division), % (reaminder or modulus)

If a and b are two integer variables whose values are 10 and 3, respectively, then the following
are true:

Expression Value

a + b 13

a – b 7

a * b 30

a / b 3

a % b 1

Table 3.3

26

Unary Operators

C has some operators which act upon a single operand like +, -, ++, —. The + and – operators
can be used either as sign or as arithmetic operators as in +10, -20, 10+20, 4-7 etc. The
increment or decrement operators (++ and —) increment or decrement the current value by
one which is a short form for a = a+1. The ++ and – operators can be either on the left side or
on the right side of the operand, which has different meanings when used in an expression.
When the ++ precedes the operand, it conveys the meaning “increment first, and then use” and
when it is suffixed to the operand it conveys the meaning “first use and then increment”. The
expression b = a++; is equivalent to b = a; a = a+1; Similarly the expression b = ++a; is
equivalent to a = a+1; b = a;

Following are some of the examples which explain the use of these operators.

int a = 10; // Declare and initialize a variable to 10

int b; // declare another variable

a++; // increment a by one which is equivalent to a= a+1 and value of a is 11 now

++a; // increment a by one which is equivalent to a=a+1 and value of a is 12 now

b=a++; // here a is assigned to b first and then a is incremented. Now b = 12 and a = 13

b = ++a; // Here a is incremented and then assigned to b. Now b = 14, a = 14

Relational and Logical Operators

Various relational operators available in C are:

<(less than) <= (less than or equal to) > (greater than)

>= (greater thanor equal to) == (equal to) != (not equal to)

The == and != operators fall into a separate precedence group, beneath the other relational
operators. These operators also have a left-to-right associativity.

These operators are used to form logical expressions representing conditions that are either
true (non-zero) or false (0).

Suppose that i=1, j=2 and k=3 are three integer variables. Several logical expressions involving
these variables are shown below.

Expression Interpretation Value

i < j true 1

(i + j) > = k true 1

(j + k) > (i + 5) false 0

k ! = 3 false 0

j == 2 true 1

 Table 3.4

In addition to the relational and equality operators, C contains three logical operators. They
are:

&& (logical and) || (logical or) ! (logical not)

The logical operators act upon operands that are themselves logical expressions. The net effect
is to combine the individual logical expressions into more complex conditions that are either
true or false. The result of a logical ‘and’ operation will be true only if both operands are true,
whereas the result of a logical ‘or’ operation will be true if either or both operands are true.

27

The result of a logical ‘not’ operator is true if the result of the expression is false, and vice
versa. Any nonzero value is interpreted as true.

Suppose that I=7,j=5 and k=10. Some complex logical expressions that make use of these
variables are shown below.

Expression Interpretation Value

(i >= 6) && (j == 5) true 1

(i >= 5) || (k == 18) true 1

(i < 11) && (j > 100) false 0

i != 10 && j < 10 && k>5 true 1

!i false 0

!(i>30) true

 Table 3.5

Assignment Operators

There are several different assignment operators in C. All of them are used to form assignment
expressions, which assign the value of an expression to an identifier. The most commonly
used assignment operator is =. Assignment expressions that make use of this operator are
written in the formidentifier = expression

Here are some typical assignment expressions:

a = 3;

x = y;

area = length * width;

delta = 0.001;

sum = a + b;

C permits multiple assignments of the formidentifier 1 = identifier 2 = . . . = expression

Here the assignments are carried out from right to left. Thus, the multiple assignment i = j = 5
assigns 5 to j and then j to i.

C contains five additional assignment operators +=, -=, *=, /= and %=.

These are really short hand notation for

<expression1> = <expression1><operator><expression2>

Usually, expression1 is an identifier, such as a variable or an array element.

x +=1 is equivalent to x = x+1, x /=3 is equivalent to x = x/3

Operator precedence

Let x = 10 and y = 5 and now consider the expression a = x+y*5+x;

This can be evaluated in many ways as (x+y) * (5+x) or x + (y*5) + x or ((x+y)*5) + (x) etc.

Expressions in C are evaluated according to their precedence defined by C language. The
above example is evaluated as x + (y*5) + x since a * is given higher precedence than +.
Parentheses have the highest precedence and hence, C first evaluates the values within
parentheses first. Most of the operators have left to right associativity meaning that they are
associated from left to right, but some have right to left like = where the right value is assigned
to left variable.

28

Following is the precedence and associativity of the various C operators.

 Operator Category Operators Associativity

unary operators - ++ — ! sizeof (type) R L

arithmetic multiply, divide * / % L R
and remainder

arithmetic add and subtract + - L R

relational operators <<=>> = L R

equality operators == != L R

logical and && L R

logical or | | L R

assignment operators = += -= *= /= %= R L

comma operator , L R

Table 3.6

Operators with same precedence (within the same group) are processed according to their
associativity. (Left to Right or Right to Left)

The Conditional Operators

Simple conditional operations can be carriedout with the conditional operator (?:) which is
also known as ternary operator. An expression that makes use of the conditional operator is
called a conditional expression. Such an expression canbe written in place of the more traditional
if –else statement,

A conditional expression is written in the form

expression 1 ? expression 2 : expression 3

Here the value depends of the logical expression1. If expression1 is evaluated to true,
expression2 is returned, otherwise, expression3 is returned. This is equivalent to

if(expression1 == true) return expression2 else return expression3;

For example, min = (i < j) ? i : j;assigns min=i if i < j, otherwise min=j

Type Casting and Type Coercion

The value of an expression can be converted to a different data type if desired. To do so, the
expression must be preceded by the name of the desired data type, enclosed in parentheses;
i.e.(data type) expression

This type of conversion from one data type to another type is known as type casting.

If no casting is done explicitly, C can automatically convert the data if necessary (called coercion)

For example,

int i;

float j;

i=1.23; /* automatically coerce the value 1.23 in to an integer 1 */

j=1; /* automatically converts inter 1 to float 1.0f */

i = (int) j; /* implicit type casting which assigns the integer part 1 to i */

29

Enumerations

An enumeration is a data type, where its members are constants that are written as identifiers,
though they have signed integer values. These constants represent values that can be assigned
to corresponding enumeration variables.

In general terms, an enumeration may be defined as

enum tag {member1, member2, …., member m};

Where enum is a required keyword, tag is a name that identifies enumerations having this
composition, and member 1, member 2 …. represents the individual identifiers that may be
assigned to variables of this type (see below).

Example : Consider the enumeration defined in Example.

enum colors {black, blue, green, red, white};

The enumeration constants will represent the following integer values:

(black = 0, blue = 1, green = 2, red = 3 and white = 4

These automatic assignments can be overridden within the definition of the enumeration by
explicitly assigning a value to it. Those constants that are not assigned explicit values will
automatically be assigned values which increase successively by 1 from the last explicit
assignment. This may cause two or more enumeration constants to have the same integer
value.

Example:

enum colors {black = -1, blue, cyan, green, magenta, red = 2, white, yellow};

The enumeration constants will now represent the values (black=-1, blue=0, cyan=1, green=2,
magenta=3, red=2, white=3, yellow=4)

To use these enumerations, an enumeration variable should be declared first and it can be
assigned only those values from within the enumeration definition.

enum <enumeration type><identified>;

enum colors cl = red; // declares cl as colors type and assigns a value red to it

Library Functions

The C language comes with a very rich set of standard library functions that carry out various
commonly used operations or calculations. Though these library functions are not a part of the
language specification, every implementations of the language include them. Library functions
are organized as sets according to their functionality and their definitions are given in header
files generally have a “.h” extension.

A library function is accessed simply by writing the function name followed by a pair of
parenthesis. If the function needs some information, the information is passed to the function
by way of arguments. The arguments must be placed within the parentheses separated by
commas. The arguments can be constants, variable names, or more complex expressions.A
function that returns a data item can appear anywhere within an expression in place of a
constant or an identifier (i.e., in place of a variable or an array element).

In order to use a library function it may be necessary to define certain constants and the function
might have to be defined ahead of its usage. The information required to use a library function
is placed in a text file called header file generally has an extension “.h”. These header files are
placed in a specific folder known to the C compiler and depends on the operating system and
compiler used. Hence, to use a function, it is common to include its header file in the main
portion of the program. This is accomplished with the preprocessor statement include. The

30

syntax is:

#include <filename>where filename represents the name of a special header file.

Some commonly used functions are given in the following table. The column labeled “type”
refers to the data type of the returned value from function. The void shown indicates that
nothing is returned by this function. Hundreds of functions are supplied by all C compilers as
Standard library functions organized into different library files. The C reference manual gives
a list of all these functions and their usage.

Some Commonly Used Library Functions

Function Type Purpose

abs (i) int Return the absolute value of i.

ceil (d) double Round up to the next integer value (the smallest integer
that is greater than or equal to d)

cos (d) double Return the cosine of d

cosh (d) double Return the hyperbolic cosine of d

exp (d) double Raise e to the power d (e=2.7182818… is the base of
the natural (Naperian) system of logarithms

fabs (d) double Return the absolute value of d

floor (d) double Round down to the next integer value (the largest integer
that does not exceed d)

fmod (d1, d2) double Return the remainder (i.e. the noninteger part of the
quotient) of d1/d2 with same sign las d1

getchar () int Enter a character from the standard input device.

log (d) double Return the natural logarithm of d

pow (d1,d2) double Return the d1 raised to the d2 power

printf(…) int Send data items to the standard output device
(arguments are complicated)

putchar (c) int Send a character to the standard output device

rand () int Return a random positive integer

sin (d) double Return the sine of d

sqrt (d) double Return the square root of d

srand (u) void Initialize the random number generator

scanf(…) int Enter data items from the standard input device
(arguments are complicated)

tan (d) double Return the tangent lof d

toascii (c) int Convert value of argument to ASCII number

tolower (c) int Convert letter tolowercase

toupper (c) int Convert letter to uppercase

 Table 3.7

31

Note: c denotes a character-type argument, i denotes an integer argument, d denotes a
double-precision argument and u denotes an unsigned integer argument

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

3.What is an unary operator?

..

..

..

3.5 INPUT AND OUTPUT

C provides a powerful set of input and output functions, which can do almost everything a
program demands. An input/output function can be accessed from anywhere within a program
by calling the appropriate functionalong with its arguments enclosed in parentheses. These
functions may be used either as an expression, if they return something (e.g., c = getchar();),
or as statements (e.g., scanf(…);).

Single Character Input

The getchar function is a part of the standard C language I/O library. It returns a single character
from a standard input device (generally a keyboard). The function does not require any
arguments. In general terms, a reference to the getchar function is written as

character variable = getchar ();

where character variablerefers to some previously declared character variable.

Example:

char ch;

ch = getchar();

Generic Input Data

Any type of data can be fed to the computer from a standard input device using the C standard
library function scanf().This function can be used to enter any combination of numerical values,
single character and strings. The function returns the number of data items that have been
entered successfully.

In general terms, the scanf function is written as

scanf (control string, agr1, arg2, …, argn)

Where control stringrefers to a string containing certain required formatting information, and
arg1, arg2,…, argn are arguments that represent the addresses of individual input data items.
The control string comprises the pattern of input that contains literals and variables represented
by a % sign followed by data type representation (known as conversion characters). Frequently
used conversion characters that follow the % symbol are listed in the following table.

32

Conversion Meaning
Character

c Data item is a single character

d Data item is a decimal integer

e Data item is a floating-point value

f Data item is a floating-point value

g Data item is a floating-point value

h Data item is a short integer

i Data item is a deciman, hexadecimal or octal integer

o Data item is an octal integer

s Data item is a string followed by a whitespace character (the null character
\0 will automatically be added at the end)

u Data item is an unsigned decimal integer

x Data item is a hexadecimal integer

[…] Data item is a string which may include whitespace characters

 Table 3.8

The arguments following the control string should match in number and data type of the
conversion strings. Each variable name must be preceded by an ampersand (&) if it is not an
array or pointer.

Example: Here is a typical application of a scanf function.

#include <stdio.h>

main (){

char item [20];

int partno;

float cost;

scanf (“%s %d %f”, item, &partno, &cost);

….

}

This example reads a string with no white spaces in between, an integer and a float number
from keyboard. The string should not contain any white space character. Note that the ampersand
is missing for item, since it is an array of characters.

Output Function

Output data can be written from the computer onto a standard output device (typically a screen)
using the library function printf. This function can be used to output any combination of
numerical values, single characters and strings. It is similar to the input function scanf, except
that itdisplays data on screen instead of reading from keyboard.

In general terms, the printf function is written as

printf (control string, arg1, arg2, …., argn)

33

Where control string isthe format information that contains literals and variable represented
with %xxx, and arg1, arg2 …, are arguments that represent the individual output data items
corresponding to the %xxx conversion strings. The arguments can be constants, single variable
or array names, or more complex expressions. In contrast to the scanf function the arguments
in a printf function are not memory addresses and therefore they are not preceded by ampersands.

Some commonly Used Conversion Characters for Data Output are given below

Conversion Meaning
Character

c Data item is displayed as a single character

d Data item is displayed as a signed decimal integer

e Data item is displayed as a floating-point value without an exponent

f Data item is displayed as a floating-point value without an exponent

g Data item is displayed as a floating-point value using either e-type or f-
type conversion, depending on value; trailing zeros, trailing decimal point
will not be displayed.

i Data item is displayed as a signed decimal integer

o Data item is displayed as an octal integer, without a leading zero

s Data item is displayed as string

u Data item is displayed as an unsigned decimal integer

x Data item is displayed as a hexadecimal integer, without the leading 0x.

Table 3.9

A width modifier can be added before any of these characters to give width to use.

For example,

%4d prints the number in a width of 4 characters, right justified

%-4d prints the number in a width of 4 characters left justified

%04d prints the number in a width of 4 characters padded with preceding zeros if necessary

%10s prints the string in a width of 10 characters

%3.3s prints the string in exactly 3 characters, trimming it if longer

%5.2f prints a float number in a width of 5 characters, out of which 2 are for decimal, one for
the dot.

In all the cases, if the width of data is more than the width specified, the width is overridden.

Example: Here is a simple program that uses the printf function.

#include <stdio.h>

#include <math.h>

main () /* print several floating point numbers */

{

float i = 2.0, j = 3.0;

printf (“Values: %f, %f, %f, %7.3f”, i, j, i + j, sqrt (i + j));

}

34

Example: Reading and Writing a Line of text

Following program reads a line of text and then writes it back, just as it was entered. The
program illustrates the syntactic differences in reading and writing a string that contains a
variety of characters, including whitespace characters.

include <stdio.h>

main () /* read and write a line of text */

{

char line [80];

scanf (“%[^\n]”, line) ;

printf (“%s”, line);

}

The %[^\n] format specifies that all characters until it is not new line should be read. Similarly
%[abcd] reads only one of out of the set a,b,c and d.

Commonly used format modifiers/flagsare listed below:

 Modifier Meaning

 - Data item is left-justified within the field (blank spaces required to
fill the minimum field width will be added after the data item rather
than before the data item)

 + A sign (either + or -) will precede each signed numerical data item;
without this flag, only negative data items are preceded by a sign

 0 Causes leading zeros to appear instead of leading blanks; applies
only to data items that are right-justified within a field whose
minimum size larger than the data item.(Note : Some compilers
consider the zero flag to be a part of the field width specification
rather than an actual flag. This assures that the 0 is processed last,
if multiple flags are present).

 (blank space) A blank space will precede each positive signed numerical data
item; this flag is overridden by the + flag if both are present.

 0 or 0X Causes octal and hexadecimal data items to be preceded by 0 and
0x, respectively.

 f, g Causes a decimal point to be present in all floating-point numbers,
even if the data item is a whole number, also prevents the truncation
of trailing zeros in gtype conversion.

 Table 3.10

Example: Here is a simple C program that illustrates the use of flags/modifiers with integer
and floating-point quantities.

include <stdio.h>

main (){ /* use of flags with integer and floating-point numbers */

int I = 123;

float x = 12.0, y = -3.3;

printf (“:%6d %7.0f %10.1e:\n\n”, I,x, y);

35

printf (“:%-6d %-7.0f %-10.1e:\n\n”, I,x, y);

printf (“:%+6d %+7.0f %+10.1e:\n\n”, I, x, y)

printf (“:%-+6d %-7.0f %10.1e:\n\n”, I,x,y);

printf (“:%7.0f %#7.0f %7g %#7g:”, x x, y, y);

}

Reading and writing a line with gets and puts functions

The standard library functions gets and puts can be used to transfer of strings between the
computer and the standard input/output devices.

Each of these functions accepts a single argument. The argument must be a data item that
represents a string (e.g., a character array). The string may include whitespace characters. In
the case of gets, the string will be entered from the keyboard, and will terminate with a newline
character (i.e. the string will end when the user presses the RETURN key).

The gets and puts functions offer simple alternatives to the use of scanf and printf for reading
and displaying strings, as illustrated in the following example.

#include <stdio.h>

main () /* read and write a line of text */

{

char line [80];

gets (line);

puts (line);

}

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

4. What is getchar()?

..

..

..

3.6 SUMMARY

Any language consists of certain alphabets, symbols, words, rules and conventions to follow.An
identifier can be arbitrarily long but the significant length depends on the compiler (The ANSI
standard recognizes 31 characters, though some recognize only the first eight characters).
Additional characters are carried along for understandability and convenience of the
programmer.A declaration consists of a data type, followed by one or more variable names, an
optional value assigned to each variable, ending with a semi colon.The increment or decrement
operators (++ and —) increment or decrement the current value by one which is a short form
for a = a+1. The ++ and – operators can be either on the left side or on the right side of the
operand, which has different meanings when used in an expression.Expressions in C are
evaluated according to their precedence defined by C language.

36

The C language comes with a very rich set of standard library functions that carry out various
commonly used operations or calculations. Though these library functions are not a part of the
language specification, every implementations of the language include them. Library functions
are organized as sets according to their functionality and their definitions are given in header
files generally have a “.h” extension.Any type of data can be fed to the computer from a
standard input device using the C standard library function scanf().This function can be used
to enter any combination of numerical values, single character and strings. The function returns
the number of data items that have been entered successfully.The standard library functions
gets and puts can be used to transfer of strings between the computer and the standard input/
output devices.

3.7 CHECK YOUR PROGRESS MODEL ANSWERS

1. for, break, case, char

2. A statement causes the computer to carry out some action.

3. Operator which act upon a single operand.

4. It returns a single character from a standard input device (generally a keyboard)

3.8 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Explain varoips operators in C.

2. Describe the data types with examples.

3. Explain the input and output with examples?

II. Answer the following questions in about 15 lines each

1. Describe character set in C.

2. Define identifier with examples and write the keywords in C.

3. Desribe the type casting, type coercion with examples

3.9 GLOSSARY

IDENTIFIER : Identifiers are names given to various program elements

VARIABLE : Logical name given to physical memory location

KEYWORD : Part of the C language vocabulary

PRINTF() : A built in function in C to print text, values,
variables,expressions.

ASCII : American Standard Code for Information Interchange

37

 BLOCK - II

 CONTROL STRUCTURES

This block gives in-depth knowledge on the various concepts of flow of control in C and
C++ such as sequencing, conditional branching using if, if-else, and if-else-elseif, switch
statement with case statements which takes any number of branches and then unconditional
branching with goto statement. Concepts of functions such as defining function, prototyping,
invoking functions, parameter passing mechanisms are described very briefly. Pointers which
store the address of variable, referencing, de-referencing, pointer arithmetic are explained
with crystal clear examples. Strings which are stream of characters and operations on strings
such as concatenation, padding, justification, reading, printing are explained using
appropriate examples.

The units included in the block are:

Unit-4: Flow of Control

Unit-5: Functions

Unit-6: Pointers and Strings

38

39

UNIT- 4: FLOW OF CONTROL
Contents

4.0 Objectives

4.1 Introduction

4.2 Sequential and Branching Flow of Control

4.3 Iterations- While, Do-While, For loops

4.4 Summary

4.5 Check your progress – Model Answers

4.6 Model Examination Questions

4.7 Glossary

4.0 OBJECTIVES

After studying this unit, you should be able to

 understand sequential flow of control in C

 describe conditional branching and un-conditional branching in C language

 explain how to work with various loops in C

 understand break, continue, and exit in C

4.1 INTRODUCTION

In the sequential flow of control, the instructions were executed only once, in the same order in
which they appeared in the program. In real world programsthis is unrealistic, since they do
not include any logical control structures. A realistic program generally include tests to determine
if certain conditions are true or false, require the repeated execution of groups of statements,
and involve the execution of individual groups of statements on a selective basis.The else is
generally applicable to the immediate preceding if condition. In some cases, where there are
multiple if conditions, there may be a confusion to the user about this association. In such
cases it is advised to use curly braces around the appropriate code to avoid confusion in reading
the code.The go to statement is used to alter the normal sequence of program execution by
transferring control to some other part of the same function without caring for the blockstructures
of code,which breaks the structured nature of program. Hence, the usage of goto statement is
highly discouraged and not seen in any of the example, but for its demonstration. This is used
in case of deeply nested loops, and the control has to be moved out of all loops at once, as may
be required in time critical applications. As a design principle, never use goto in structured
programming unless it is an absolute must.Iterative statements are repeated based on a condition.
As long as the condition is true, it continues to execute the set of statements within the block
repeatedly. For example, the odd numbers within the range of 0 to 10 are to be printed. A
value is considered to be odd if the remainder is 1 when divided by 2 (x%2 should be 1).
Programmatically.

40

4.2 SEQUENTIAL AND BRANCHING FLOW OF CONTROL

Sequential Flow of Control

In the programs so far, the instructions were executed only once, in the same order in which
they appeared in the program. In real world programsthis is unrealistic, since they do not
include any logical control structures. A realistic program generally include tests to determine
if certain conditions are true or false, require the repeated execution of groups of statements,
and involve the execution of individual groups of statements on a selective basis. In switch
statement, each case is an entry point for the code execution based on its value. Default (denoted
with a special keyword “default”) is used if the value doesn’t match any of the cases provided.
Once, the entry point is selected, it continues to execute all statements till the end of switch
block. That means, it executes all cases after the selection. To avoid this, a break statement is
used to skip all the lines from this point to the end of switch block.

Branching with The if, if-else, if-else-else if and switch Statement

The if – else statement is used to carry out a logical test and then take one of two possible
actions, depending on the outcome of the test (i.e., whether the outcome is true or false).General
form of if-else statement can be written as

if (condition) statement; else statement

Here, the statement can be a single statement or a compound statement that is enclosed in
curly braces as {statement1; statement2; statement3; … ;}.In practice, it is generally a compound
statement which may include other control statements. The else part is optional.

The condition expression must be placed in parentheses. In this form, if the condition is true
(non zero), the first statement will be executed otherwise, the second statement (after else) is
executed. For example, consider a case where a pass mark is 50. Hence to declare the result the
code may be

if(m>= 50) printf(“Pass”); else printf(“Failed”);

This may be written more legibly as follows:

if(m>=50)

{

printf(“Pass”);

}

else

{

printf(“Failed”);

}

There may be multiple if else statements or nested if else statements in many programs as in
the following example. Consider grading of a student based on the mark. If the mark >= 75, A
grade, >=60, B grade, >=50, C grade otherwise F grade. This can be given with various if else
statements as follows:

#include <stdio.h>

void main()

41

{

int m; // Declare a variable m for marks

printf(“Enter marks: “); // Print a prompt statement for clarity

scanf(“%d”, &m); // Read a number into m

if(m>=75) {

printf(“A Grade”);

}

else if(m >= 60) {

printf(“B Grade”);

}

else if(m>=50) {

printf(“C Grade”);

}

else {

printf(“F Grade”);

}

}

Dangling if-else

The else is generally applicable to the immediate preceding if condition. In some cases, where
there are multiple if conditions, there may be a confusion to the user about this association. In
such cases it is advised to use curly braces around the appropriate code to avoid confusion in
reading the code.

if (condition)

 if (condition)

else

 printf(“dangling else!\n”);

In the above code, though our intension is to attach the else part with the first if condition, the
computer attaches it to the second if condition. Hence, adding curly braces as given below,
this is properly attached to the first if confidition.

if (condition){

 if (condition)

}

else

 printf(“dangling else!\n”);

42

Multi-Branching with switch Statement

The switch statement causes a particular group of statements to be chosen from several available
groups. The selection is based upon the current value of an expression that is included within
the switch statement. It is a special case of more general if else chain of statements.

The general form of the switch statement is

switch (variable)

{

case <value1>: statement;

case <value2>: statement;

… …

default: statement;

}

Where the variable is an integer or character type (an expression that results in an integer
value may be used in place of the variable).

Each case is an entry point for the code execution based on its value. Default (denoted with a
special keyword “default”) is used if the value doesn’t match any of the cases provided. Once,
the entry point is selected, it continues to execute all statements till the end of switch block.
That means, it executes all cases after the selection. To avoid this, a break statement is used to
skip all the lines from this point to the end of switch block.

For example consider the following example, where a number is given by the user and based
on the number a color is printed as follows:

0: Black, 1: Red, 2: Green, 3: Blue, 4: White and any other value is Yellow. The program with
if else conditions is as below:

#include <stdio.h>

void main() {

int value;

printf(“Enter a number:”);

scanf(“%d”,&value);

if(value == 0)

printf(“Black”);

else if(value == 1)

printf(“Red”);

else if(value == 2)

printf(“Green”);

else if(value == 3)

printf(“Blue”);

else if(value == 4)

printf(“White”);

else

43

printf(“Yellow”);

}

The same program can be written using the switch-case statements is as follows:

#include <stdio.h>

void main() {

int value;

printf(“Enter a number:”);

scanf(“%d”,&value);

switch(value){

case 0: printf(“Black”);

case 1: printf(“Red”);

case 2: printf(“Green”);

case 3: printf(“Blue”);

case 4: printf(“White”);

default: printf(“Yellow”);

}

}

In the above program, consider that a value 2 is given when running the program. Then the
control goes to the line case 2: directly where it prints the “Green” and doesn’t stop there. It
also prints all the statements till the end of block, so it prints “Blue”, “White” and “Yellow” as
well, which is not correct. To avoid execution of other statements, after the “case 2” block of
statements, a “break” statement must be introduced. The break statement at the end of default
block is optional since, it is any way the last statement within the switch block. The correct
program now becomes:

#include <stdio.h>

void main() {

int value;

printf(“Enter a number:”);

scanf(“%d”,&value);

switch(value){

case 0: printf(“Black”); break;

case 1: printf(“Red”); break;

case 2: printf(“Green”); break;

case 3: printf(“Blue”); break;

case 4: printf(“White”); break;

default: printf(“Yellow”);

}

}

44

Unconditional Branching: The goto Statement

The go to statement is used to alter the normal sequence of program execution by transferring
control to some other part of the same function without caring for the blockstructures of
code,which breaks the structured nature of program. Hence, the usage of goto statement is
highly discouraged and not seen in any of the example, but for its demonstration. This is used
in case of deeply nested loops, and the control has to be moved out of all loops at once, as may
be required in time critical applications. As a design principle, never use goto in structured
programming unless it is an absolute must.

In its general form, the go to statement is written as

goto label;

where label is an identifier used to label the target statement to which control will be transferred.

label: statement

Each labeled statement within the current function must have a unique label, i.e., no two
statements can have the same label.

Example: The following skeletal outline illustrates how the go to statement can be used to
transfer control out of a loop if an unexpected condition arised.

/* main loop */

scanf (“%f”, &x);

while (x <= 100) {

… …

if (x < 0) goto errorcheck;

… …

scanf (“%f”, &x);

… …

}

… …

/* error detection part */

errorcheck : {

printf(“ERROR – NEGATIVE VALUE FOR X”);

}

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. List out branching statements in C?

..

..

..

45

4.3 ITERATIONS- WHILE, DO-WHILE, FOR LOOPS

Iterative Controls or Loops

Iterative statements are repeated based on a condition. As long as the condition is true, it
continues to execute the set of statements within the block repeatedly. For example, the odd
numbers within the range of 0 to 10 are to be printed. A value is considered to be odd if the
remainder is 1 when divided by 2 (x%2 should be 1). Programmatically,

if(x%2 == 1) printf(“%d”,x);

The above statement prints the value of x only if it is odd, otherwise, it doesn’t print anything.

For small set of values, the above problem can be solved with a series of if statements as
follows:

if(0%2 == 1) printf(“%d”,0);

if(1%2 == 1) printf(“%d”,1);

if(2%2 == 1) printf(“%d”,2);

… …

if(9%2 == 1) printf(“%d”,9);

if(10%2 == 1) printf(“%d”,10);

This solution fails it the range is not known ahead, and also for large range it is not feasible. To
avoid this we may repeat the if statement with different values in the range. The generic algorithm
for this is

x = start;

Repeat:

 If(x%2 is 1) then print x;

 Increment x by one;

Till x < end;

There are three iterative loop controls available in C language, viz., “for”, “while” and “do-
while”. Theoretically all these can do the same thing with different syntax. However, in
practice, a loop statement is selected based on the situation.

The while Statement

The “while” statement is used to carry out loop operations based on a condition. The general
form of the statement is

while (expression) statement

The included statement will be executed repeatedly, as long as the value of expression is not
zero (true). If the expression never becomes zero, it goes into an infinite loop effectively
hanging the terminal. This statement can be simple or compound, though it is typically a
compound statement. It must include some statement which alters the value of expression,
thus providing a stopping condition for the loop.

Example: Consider that consecutive digits 0,1,2, ….,9, with one digit on each line are to be
printed. This can be accomplished with the following program.

#include <stdio.h>

46

main ()/* display the integers 0 through 9 */

{

int digit = 0;

while (digit <=9) // Condition

{

printf(%d\n”, digit); // Print digit followed by a newline

++digit; // Increment digit

}

}

Example: Consider that all odd numbers in the range 0 to 10 are to be printed.

#include <stdio.h>

main () /* display odd numbers between 0 and 10 */

{

int digit = 0;

while (digit <=10) // Condition

{

if (digit%2 == 1)

{

printf(%d\n”, digit); // Print digit followed by a newline

}

++digit; // Increment digit

}

}

The do-while Statement

When a loop is constructed using the while statement, the test for continuation of the loop is
carried out at the beginning of each pass. Sometimes, however, it is desirable to have a loop
with the test for continuation at the end of each pass. This can be accomplished by means of
the do – while statement.The general form of the do – while statement is

do statement; while (expression)

The included statement will be executed repeatedly, as long as the value of expression is not
zero. Notice that statement will always be executed at least once, since the test for repetition
does not occur until the end of the first pass through the loop. The statement can be either
simple or compound though most applications will require it to be a compound statement. It
must include some statement which alters the value of expression so that looping can terminate.

Example: Consider the same example given above for a while loop which will now be achieved
with a do while loop.

47

#include <stdio.h>

main ()/* display the integers 0 through 9 */

{

int digit = 0;

do

printf (“%d\n”, digit ++); // print value and then increment digit

while (digit <=9);

}

Example: Consider that all odd numbers in the range 0 to 10 are to be printed.

#include <stdio.h>

main () /* display odd numbers between 0 and 10 */

{

int digit = 0;

 do

{

if (digit%2 == 1) // check if digit is odd

{

printf(%d\n”, digit); // Print digit followed by a newline

}

++digit; // Increment digit

}

while (digit <=10) // Condition

}

The for Statement

Perhaps the most commonly used looping statement in C is the “for” statement. This statement
includes an expression that specifies an initial value for one or more loop variables, another
expression that provides a condition and a third expression that modifiesthe loop variable(s) at
the end of each pass.

The general form of the for statement is

for (expression1; expression2; expression3) statement;

Where expression1 is used to initialize some parameter or parameters (called loop variable(s))
that control the looping action, expression2 represents a condition that must be satisfied for
the loop to continue execution, and expression3 is used to alter the value of the parameter.
Typically, expression1 is an assignment expression, expression 2 is a logical expression and
expression3 is a unary expression or an expression. All the three expressions are optional
which means that the can be empty as in “for(;;) statement” where there is no initialization, no
condition and no modifier. This results in an infinite loop, which should be avoided unless
needed.

48

When a for statement is executed, expression2 is evaluated and tested before each pass through
the loop, and expression3 is evaluated at the end of each pass.

Example: Printing of consecutive numbers 0 to 9 can be written using a for loop as follows:

include<stdio.h>

main ()/* display the numbers 0 through 9 */

{

int digit;

for (digit = 0; digit <=9; ++ digit)

printf (“%d\n”, digit);

}

Example: Consider the same example that prints odd numbers between 0 and 10

include <stdio.h>

main () /* display the odd numbers between 0 and 10*/

{

int digit;

for (digit = 0; digit <=10; ++ digit)

{

if(digit%2 == 1)

printf (“%d\n”, digit);

}

}

Nested Control Structures

Control structures like if-else, switch-case, for, while, do-while can be nested (i.e. embedded)
one within another. The inner and outer loops need not be generated by the same type of
control structure. It is mandatory that there should be no overlaps which means, one loop
should be completely embedded within the other. Each loop must be controlled by a different
variable, so that there is no clash among loop conditions.

Example: Printing sum of three, three consecutive numbers between 1 and 12, i.e. sums of
(1,2,3),(4,5,6), (7,8,9) and (10,11,12). Essentially this is done using two for loops, where the
first loop runs 4 times and second loop run three times.

#include <stdio.h>

void main()

{

int i,j,sum; // Declare three variables

for (i=0; i<4; i++) // Out for loop that iterates for 4 times with i = 0,1,2 and 3

{

sum = 0; // Every time initialize sum to zero

for(j=0; j<3; j++) // Inner loop that iterates 3 times with j = 0,1 and 2

49

{

sum += (i*4 + j+1); // Add current number to sum

}

printf(“Sum: %d\n”, sum);

}

}

Here the inner for loop is executed for each iteration of outer for loop, every time changing
value of j from 0 to 2. The i value changes from 0 to 3. The consecutive number can be
obtained with the formula i*4 + j + 1.

The break and continue Statements

In some situations, we may skip an iteration based on some condition and we may abruptly
terminate the loop. These two actions are achieved with continue and break statements
respectively. The continue statement is used to bypass the remainder of the current pass through
a loop. The loop does not terminate when a continue statement is encountered. Rather, the
remaining loop statements are skipped and the computation proceeds directly to the next pass
through the loop. On the other hand, the break statement abruptly ends the loop totally and
goes to the next statement after the loop. The continue statement can be included within a for,
while or a do–while statement. A break can also be used in switch-case apart from these three
loops. The syntax for continue and break is:

continue;

break;

Example: Consider an application that reads numbers continuously from the keyboard and
prints the sum of all even numbers not divisible by 4. The reading ends when the user enters a
-1 as input.

#include <stido.h>

void main()

{

int sum = 0; // declare variable for sum and initialize

int num; // Declare a variable for input

while(1) // 1 is alway true, hence it is an infinite loop

{

printf(“Enter a number (-1 to Terminate):”);

scanf(“%d”,&num);

if(num == -1)

{

break; // break out of loop only if value is -1

}

if(num%4 == 0)

50

{

continue; // skip when the number is divisible by 4

}

if(num%2 == 0)

{

sum += num; // add to sum only if the number is even

}

}

printf(“Sum: %d\n”,sum);

}

The Comma Operator

This operator permits two different expressions to appear in situations where only one expression
would ordinarily be used. For example, it is possible to write

for (expression1a, expression1b, expression2, expression3a, expression3b) statement;

Where expression1a and expression1b are the two expressions, separated by the comma
operator, where only one expression (expression1) would normally appear. These two
expressions would typically initialize two separate indices that would be used simultaneously
within the for loop.Similarly expression3a and expression3b are combined with a comma
operator, where a for loop expects only one expression.

Example:

for(i=0,j=10; i<10 && j>0; i++,j—) statement;

Here two integers i and j are initialized, tested as a compound logical expression and i is
incremented and j is decremented after each pass.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. List out iterative statements in C?

..

..

..

4.4 SUMMARY

In C Language, a realistic program generally include tests to determine if certain conditions
are true or false, require the repeated execution of groups of statements, and involve the
execution of individual groups of statements on a selective basis. In switch statement, each
case is an entry point for the code execution based on its value. Default (denoted with a special
keyword “default”) is used if the value doesn’t match any of the cases provided. Once, the
entry point is selected, it continues to execute all statements till the end of switch block. That
means, it executes all cases after the selection. To avoid this, a break statement is used to skip

51

all the lines from this point to the end of switch block. Iterative statements are repeated based
on a condition. As long as the condition is true, it continues to execute the set of statements
within the block repeatedly. There are three iterative loop controls available in C language,
viz., “for”, “while” and “do-while”. Theoretically all these can do the same thing with different
syntax. However, in practice, a loop statement is selected based on the situation.In some
situations, we may skip an iteration based on some condition and we may abruptly terminate
the loop. These two actions are achieved with continue and break statements respectively. The
continue statement is used to bypass the remainder of the current pass through a loop. The
loop does not terminate when a continue statement is encountered. Rather, the remaining loop
statements are skipped and the computation proceeds directly to the next pass through the
loop. On the other hand, the break statement abruptly ends the loop totally and goes to the
next statement after the loop. The continue statement can be included within a for, while or a
do–while statement. A break can also be used in switch-case apart from these three loops. The
syntax for continue and break iscontinue.

4.5 CHECK YOUR PROGRESS MODEL ANSWERS

1. if, if-else, if-else-elseif, switch

2. while, do-while, for

4.6 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Explain if, if-else, if-else if wih examples.

2. Describe the switch with examples

3. Differentiae the while, do-while, for with examples?

II. Answer the following questions in about 15 lines each

1. Describe goto statement with examples.

2. Explainbreak and continue in C.

3. Describe the for loop examples

4.7 GLOSSARY

IF : Reserved word in C which execute a branch of statement if condition
is true

ELSE : Reserved word in C which execute alternative branch of if

DEFAULT : Executes default case of switch statement

GOTO : Un-conditional branching statement in C

BREAK : Exit from the iterative statement or loop

52

UNIT- 5: FUNCTIONS

Contents

5.0 Objectives

5.1 Introduction

5.2 Basics of Functions

5.3 Recursive Functions

5.4 Pre-Processive Directives

5.5 Summary

5.6 Check your progress – Model Answers

5.7 Model Examination Questions

5.8 Glossary

5.0 OBJECTIVES

After studying this unit, you should be able to

 explainhow to define and use functions in C

 describe various parameter passing mechanisms in C language

 explain how to write programs using recursive functions in C

 understand pre-processive directives in C

5.1 INTRODUCTION

A function is a self-contained program segment that carries out some specific, well-defined
task. Every C program consists of one or more functions. One of these functions must be
called main, from where the execution begins. Additional functions will be called either from
main or from other functions. ou can divide up your code into separate functions. How you
divide up your code among different functions is up to you, but logically the division is such
that each function performs a specific task. A function declaration tells the compiler about a
function’s name, return type, and parameters. A function definition provides the actual body
of the function. While creating a C function, you give a definition of what the function has to
do. To use a function, you will have to call that function to perform the defined task. When a
program calls a function, the program control is transferred to the called function. A called
function performs a defined task and when its return statement is executed or when its function-
ending closing brace is reached, it returns the program control back to the main program. To
call a function, you simply need to pass the required parameters along with the function name,
and if the function returns a value, then you can store the returned value. If a function is to use
arguments, it must declare variables that accept the values of the arguments. These variables
are called the formal parameters of the function. Formal parameters behave like other local
variables inside the function and are created upon entry into the function and destroyed upon
exit. The call by value method of passing arguments to a function copies the actual value of an
argument into the formal parameter of the function. In this case, changes made to the parameter
inside the function have no effect on the argument. By default, C programming uses call by
value to pass arguments. In general, it means the code within a function cannot alter the
arguments used to call the function. The call by reference method of passing arguments to a

53

function copies the address of an argument into the formal parameter. Inside the function, the
address is used to access the actual argument used in the call. It means the changes made to the
parameter affect the passed argument. To pass a value by reference, argument pointers are
passed to the functions just like any other value.

5.2 BASICS OF FUNCTIONS

A function is a self-contained program segment that carries out some specific, well-defined
task. Every C program consists of one or more functions. One of these functions must be
called main, from where the execution begins. Additional functions will be called either from
main or from other functions.If a program contains multiple functions, their definitions may
appear in any order. One function definition cannot be embedded with in another.

A function will carry out its intended action whenever it is accessed (i.e. whenever the function
is “”called”) from some other portion of the program. The same function can be accessed from
several different places within a program. Once the function has carried out its intended action,
control will be returned to the point from which the function was accessed.

A function processes information passed to it by the calling statement and returns a single
value. Information will be passed to the function via special identifiers called arguments or
parameters and returned via the return statement. Both parameters and return values are optional
which means some functions my take input but return nothing, may take nothing but returns a
value or may take input and return a value.

Defining a Function

A function definition has different principal components: A return type, the function name, the
argument declarations and the body of the function.

The first line of a function definition contains the type specification of the value returned by
the function, followed by the function name, and (optionally) a set of arguments, separated by
commas and enclosed in parentheses. If returntype specification is omitted, it is assumed that
it returns an integer. An empty pair of parentheses must follow the function name if the function
definition does not include any arguments.

The general structure of a function is as follows:

<data-type><function name> (argument1, argument2, … argument n)

<data type of argument1> argument1;

<data type of argument2> argument2;

… ...

<data type of argument n> argument n;

{

statements;

return <value>;

}

C also defines a convenient and more popular form of a function definition where the data
types of each parameter is given in the argument list itself as follows, which is used throughout
this text.

<data-type><function name> (type1 argument1, type2 argument2, … type n argument n)

{

54

statements;

return <value>;

}

Where data–type represents the data type of the value which is returned, and name represents
the function name. Each formal argument must be defined following the parentheses and before
the curly brace begins.

The formal arguments or formal parameter allow information to be transferred from the calling
portion of the program to the function. The corresponding arguments in the function reference
are called actual arguments, since they define the information actually being transferred. The
identifiers used as formal arguments are “local” in the sense that they are not recognized
outside of the function. Hence, the names of the formal arguments may be the same as the
names of other identifiers that appear outside the function definition.

Each formal argument must be of the same data type as the data item it receives from the
calling portion of the program.

Information is returned from the function to the calling portion of the program via the return
statement. The return statement also causes control to be returned to the point from which the
function was accessed.In general terms, the return statement is written as

return expression;

where the expression must result in a value of the return data type of the function.

As an example, consider the function that takes two integers and returns their sum as an integer.

int add(a, b)

int a;

int b;

{

return a+b;

}

The same method may be written as

int add(int a, int b)

{

return a+b;

}

Consider another function that just prints a hello message and returns nothing (void).

void show_message()

{

printf(“Hello World!\n”);

}

Consider another function that takes no input but sends the value of PI.

float getPi()

{

55

return 3.1415f;

}

Consider another function that takes a number as input and returns nothing.

float print_square(int n)

{

printf(“%d\n”, n*n);

}

Accessing a Function

A function can be accessed (i.e. called) by specifying its name, followed by a list of arguments
enclosed in parentheses and separated by commas. The function call may appear by itself (that
is, it may comprise a simple expression), or it may be one of the operands within a more
complex expression.

The arguments appearing in the function call are referred to as actual arguments, in contrast to
the formal arguments that appear in the first line of the function definition. In a normal function
call, there will be one actual argument for each formal argument. The actual arguments may be
expressed as constants, single variables, or more complex expressions. However, each actual
argument must be of the same data type as its corresponding formal argument.

Passing Arguments to a Function

When a value is passed to a function via an actual argument, the value of the actual argument
is copied into the function. Therefore, the value of the corresponding formal argument can be
altered within the function, but the value of the actual argument within the calling routine will
not change. This procedure for passing the value of an argument to a function is known as
passing by value.If the changes to a variable in the called function reflect back in the calling
program, it is known as pass by reference, which is not directly supported by C language. This
is achieved in C language by passing the address of the variable and this address is used in the
function to manipulate the value (known as pointer which will be covered later).

Function Prototypes

Many C compilers support a more comprehensive system for handling argument specifications
in function definitions. In particular, the proposed ANSI standard permits each of the argument
data types within a function declaration to be followed by an argument name, that is,

<data type><function name> (<type 1><arg 1>, <type 2><arg 2>, ... <type n><arg n>);

Where arg 1, arg2, … arg n refer to the first argument, the second argument, and so on.

Function declarations written in this form are called function prototypes.

Function prototypes are desirable(but not mandatory) because they facilitate error checking
between the calls to a function and the corresponding function definitions.

56

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is a function?
..

..

..

5.3 RECURSIVE FUNCTIONS

Recursion is a process by which a function calls itself repeatedly, until some specified condition
has been satisfied. The process is used for repetitive computations in which each action is
stated in terms of a previous result. Many iterative (i.e. repetitive) problems can be written in
this form.

In order to solve a problem recursively, two conditions must be satisfied. First, the problem
must be written in a recursive form, and second, the problem statement must include a stopping
condition. Consider calculation of factorial of a positive integer quantity. This is expressed as
n! = 1 x 2x 3x … x n, where n is the specified positive integer. However, it can also be
expressed in another way, by writing n! = n x (n-1)! where n> 0 and 0! = 1. This is a recursive
statement of the problem, in which the desired action (the calculation of n!) is expressed in
terms of a previous result (the value of (n-1)!, which is assumed to be known). Hence, the
recursive definition should move towards the known end condition for this to terminate properly.
This last expression provides a stopping condition for the recursion.

Example: Calculating Factorials

include <stdio.h>

/* calculate the factorial of an integer quantity using recursion */

main ()

{

int n;

long int factorial (int n);

/* read in the integer quantity */

printf (“n = “);

scanf (“%d”, &n);

/* calculate and display the factorial */

printf(“n! = %1d\n”, factorial (n)); // Call to factorial function

}

long int factorial (int n) // calculate the factorial

{

if (n ==1){

return (1); // Termination condition

57

}

else {

return (n * factorial (n – 1)); // Recursive statement

}

}

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What is a recursive function?
..

..

..

5.4 PRE-PROCESSIVE DIRECTIVES

The C preprocessor is already introduced earlier and some of the useful directives are discussed
here. The C preprocessor is a collection of special statements, called directives that are executed
before the actual compilation process begins. Some of the preprocessor directives are #if,
#elif, #else, #endif, #ifdef, #ifndef, #line and #undef. The preprocessor also includes three
special operators namely defined,#, and # #.Thus, a preprocessor directive may appear anywhere
within a program though generally they appear at the beginning of a program. However, the
directive will apply only to the portion of the program following its appearance.

Macros

The preprocessor provides a convenient way to define shortcuts and constants using the directive
#define. The format of a macro is:

#define <macroname><optional parameters in brackets><actual definition>

Once, a macro is defined, it can be used in the program, as illustrated in the following program:

#include <stdio.h>

#define PI 3.1415f

#define area(r) (PI*r*r)

int main()

{

 int radius;

 float a;

 printf(“Enter the radius: “);

 scanf(“%d”, &radius);

 a = area(radius);

58

 printf(“Area of circle is %.2f”, a);

 return 0;

}

In the above program two macros are defined. The first one is a constant PI and the other is a
formula to compute the area. When the program is compiled, these values are substituted in
the program and then compiled.

Conditional operators

The #if, #elif, #else and #endif directives are used frequently. They permit conditional
compilation of the source program, depending on the value of one or more true/false conditions.
They are sometimes used in conjunction with the defined operator, which is used to determine
whether or not a symbolic constant or a macro identifier has been defined within a program.

Example: The following preprocessor directives illustrate the conditional compilation of a C
program. The conditional compilation depends on the status of the symbolic constant
FOREGROUND.

#if defined (FOREGROUND)

#define BACKGROUND 0

#else

#define FOREGROUND 0

#define BACKGROUND 7

#endif

Here, if FOREGROUND has already been defined, the symbolic constant BACKGROUND
will represent the value 0. Otherwise, FOREGROUND and BACKGROUND will represent
the values 0 and 7, respectively.

Example: Here is another example for conditional compilation. In this case the conditional
compilation depends on the value represented by the symbolic constant BACKGROUND.

#if(BACKGROUND)== 7

#define FOREGROUND0

#elif BACKGROUND==6

#define FOREGROUND1

#else

#define FOREGROUND6

#endif

The # operator

The operator # allows a formal argument within a macro definition to be converted to a string
by prefixinga # symbol.The corresponding actual argument will automatically be enclosed in
double quotes. Consecutive whitespace characters inside the actual argument will be replaced
by a single blank space, and any special characters, such as ‘,”and\, will be replaced by their
corresponding escape sequences, e.g. \’,\” and \\. In addition, the resulting string will
automatically be concatenated (combined) with any adjacent strings.

Example: Here is an illustration of the use of the # operator

59

#define display(text) printf(#text “\n”)

main ()

{

. . .

display (Please do not sleep in lclass);

. . .

display (Please – don’t snore during the professor’s lecture!)

}

within main, the macros are equivalent to

printf (“please do not sleep in class. \n”);

and

printf (“Pllease – don\’t snore during the professor\’s lecture!\n”);

Notice that each actual argument is converted to a string within the “printf” function. Each
argument is concatenated with a newline character (\n), which is written as a separate string
within the macro definition. Also, notice that the consecutive blank spaces appearing in the
second argument are replaced by single blank spaces, and each apostrophe (‘) is replaced by
its corresponding escape sequence (\’).

The ## Operator

The “token-pasting” operator ## causes individual items within a macro definition to be
concatenated, thus forming a single item. The various rules governing the use of this operator
are somewhat complicated. However, the general purpose of the token-pasting operator is
illustrated in the following example.

define display(i)printf (“x” # i “ = %f\n”, x # # i)

Suppose this macro is accessed by writing

display (3);

The result will be

printf (“x3 = %f\n”, x3);

Thus, the expression x ## i becomes the variable x3, since 3 is the current value of the argument
i.

Notice that this example illustrates the use of both the #and ## operators.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

3. How do you define a macro?

..

..

..

60

5.5 SUMMARY

In C Language, A function is a group of statements that together perform a task. Every C
program has at least one function, which is main(), and all the most trivial programs can
define additional functions. You can divide up your code into separate functions. How you
divide up your code among different functions is up to you, but logically the division is such
that each function performs a specific task. A function declaration tells the compiler about a
function’s name, return type, and parameters. A function definition provides the actual body
of the function. The C standard library provides numerous built-in functions that your program
can call. For example, strcat() to concatenate two strings, memcpy() to copy one memory
location to another location, and many more functions. A function can also be referred as a
method or a sub-routine or a procedure, etc. A function declaration tells the compiler about a
function name and how to call the function. The actual body of the function can be defined
separately. unction declaration is required when you define a function in one source file and
you call that function in another file. In such case, you should declare the function at the top of
the file calling the function.

While creating a C function, you give a definition of what the function has to do. To use a
function, you will have to call that function to perform the defined task. When a program calls
a function, the program control is transferred to the called function. A called function performs
a defined task and when its return statement is executed or when its function-ending closing
brace is reached, it returns the program control back to the main program. To call a function,
you simply need to pass the required parameters along with the function name, and if the
function returns a value, then you can store the returned value. f a function is to use arguments,
it must declare variables that accept the values of the arguments. These variables are called
the formal parameters of the function. Formal parameters behave like other local variables
inside the function and are created upon entry into the function and destroyed upon exit. The
“token-pasting” operator ## causes individual items within a macro definition to be
concatenated, thus forming a single item. The various rules governing the use of this operator
are somewhat complicated.

5.6 CHECK YOUR PROGRESS MODEL ANSWERS

1. A function is a self-contained program segment that carries out some specific, well-
defined task

2. Recursion is a process by which a function calls itself repeatedly, until some specified
condition has been satisfied

3. #define <macroname><optional parameters in brackets><actual definition>

5.7 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Explain recursion with suitable examples.

2. Describe the macros with suitable examples

3. Write a function to print factorial a given number?

II. Answer the following questions in about 15 lines each

1. Describe advantages of functions in programming.

2. Explain how to define and call a function with an example.

3. Explain conditional compilation with an example.

61

5.8 GLOSSARY

PARAMETER : Variable or expression or value passed to/from
function

ACTUAL PARAMETER : Variable or expression or value in the main()

FORMAL PARAMETER : Variable or expression or value in the definition of a
function

CALL BY VALUE : values of actual parameters are copied into formal
parameters

CALL BY REFERENCE : Address of actual parameter is passed to formal
parameter

62

UNIT- 6: POINTERS AND STRINGS

Contents

6.0 Objectives

6.1 Introduction

6.2 Pointers in C

6.3 Strings

6.4 Summary

6.5 Check your progress – Model Answers

6.6 Model Examination Questions

6.7 Glossary

6.0 OBJECTIVES

After studying this unit, you should be able to

 describedeclaring pointers of various data types in C

 explainhow pointers can be manipulated C language

 understandhow to declare strings in C

 describevarious operations on strings in C

6.1 INTRODUCTION

Computer stores data in bits and bytes only. Every data item occupies one or more contiguous
memory cells (i.e., adjacent words or bytes). The number of memory cells required to store a
data item depends on the type of data item. For example, a single character will typically be
stored in 1 byte (8 bits) of memory; an integer usually requires two or four contiguous bytes,
a floating-point number may require four contiguous bytes, and a double-precision quantity
may require eight contiguous bytes. The memory cells are sequentially numbered from 0 to
maximum memory available. The lower range of memory addresses are used by operating
system components generally and the user space is after this range. Hence the addresses of
variables are large numbers in general, expressed as hexadecimal numbers generally. Pointers
are often passed to a function as arguments if the changes to the argument should reflect back
in the calling program. This is referred to as reference (or by address or by location).

When an argument is passed by value, the data item is copied to the function. Thus, any
alteration made to the data item within the function is not carried over into the calling function.
When an argument is passed by reference, the address of a data item is passed to the function.
Hence, any change that is made to the data item (i.e. to the contents of the address) will reflect
in both the calling and called function. Thus, the use of a pointer as a function argument
permits the corresponding data item to be altered globally from within the function. The String
is defined as an array of characters which will have a size of 15, since the string length is 14
including spaces and the terminating ‘\0’ character at the end. Both printf statements will print
the same string while the printf(“\n”) provides the new line between them. In many cases, a
string may be copied into another, which is taken care by strcpy function of C library.Internally,
this is copying the elements of one array to another. The strcpy() function requires two
arguments. The first is the address of the target array into which the string is to be copied, and
the second is the address of the source array containing the original string.

63

6.2 POINTERS IN C

Fundamentals of Pointers

Computer stores data in bits and bytes only. Every data item occupies one or more contiguous
memory cells (i.e., adjacent words or bytes). The number of memory cells required to store a
data item depends on the type of data item. For example, a single character will typically be
stored in 1 byte (8 bits) of memory; an integer usually requires two or four contiguous bytes,
a floating-point number may require four contiguous bytes, and a double-precision quantity
may require eight contiguous bytes. The memory cells are sequentially numbered from 0 to
maximum memory available. The lower range of memory addresses are used by operating
system components generally and the user space is after this range. Hence the addresses of
variables are large numbers in general, expressed as hexadecimal numbers generally.

The human beings are used to the name convention where each object is given a name but
there are cases where numbers are used. Typical example for a number convention is the hotel
tables, where each table is internally numbered and the service is based on the table, but not on
the persons. Similarly the rooms in a hotel are numbered. Suppose a person “X” stays in room
102. Now clean the room of X and clean room102 mean the same. In the same way if a
variable v is assigned the space starting at 0x1f1f1f, then v=10 and put 10 at address 0x1f1f1f
will both assign the value 10 to v. The “v=10” is named convention and “put 10 at address
0x1f1f1f” is numbered convention. Since the direct address is used in numbered convention,
its effect can be seen from anywhere in the program, or even across programs.

Suppose x is a variable that represents some particular data item. The compiler will automatically
assign memory cells for this data item. The data item can be accessed if the location of the first
memory cell is known (i.e. the address). The address of x’s memory location can be obtained
by the using & operator (called the address operator).

Now let us assign the address of x to another variable, px. Thus,

px = &x

This new variable is called a pointer to x, since it “points to the location where x is stored in
memory. Note that px representsx’s address, not its value. Thus, px is referred to as a pointer
variable. The relationship between px and x is illustrated below where x is located at an address
“0Xaabbcc and x value is 25.

Address of x value of x

0xaabbcc 25

Figure 6.1

The data item represented by x (i.e., the data item stored in x’s memory cells) can be accessed
by the expression *px, where * is a unary operator (called the indirection operator) that operates
only on a pointer variable. Therefore, *px and x both represent the same data item (i.e., the
contents of the same memory cells). Furthermore, if we write px = &x; u =*px; then u and v
will both represent the same value, i.e. the value of x will be assigned to u via a pointer
indirectly.

Pointer Declarations

Pointer variables must be declared before they are used in a C program. The declaration is as
follows:

<data-type> *<variable>

64

The interpretation of a pointer declaration is differentthan the interpretation of other variable
declarations.When a pointer variable is declared, the variable name must be preceded by an
asterisk (*) which informs the compiler that the variable is a pointer. The data type refers to
the data type of the object stored at the address given by the pointer.

Example : A C program contains the following declarations :

float u, *v; // u is ordinary variable, v is a pointer to a float number

char *pv; // pv is a variable to a character

Example: Shown below is a simple program that illustrates the relationship between two integer
variables, their corresponding addresses and their associated pointers.

#include <stdio.h>

main ()

{

int u = 3;

int v;

int pu; /* pointer to an integer */

int pv; /* pointer to an integer */

pu = &u; /* assign address of u to pu */

v = pu; / * assign value of u to v */

pv = &v; /* assign address of v to pv */

printf (“\nu=%d &u=%xpu=%d”, u, &u, pu, *pu);

print (“\n\nv=%d &v=%xpv=%x *pv=%d” v, &v, pv, *pv);

}

Passing Pointers to a Function

Pointers are often passed to a function as arguments if the changes to the argument should
reflect back in the calling program. This is referred to as reference (or by address or by location).

When an argument is passed by value, the data item is copied to the function. Thus, any
alteration made to the data item within the function is not carried over into the calling function.
When an argument is passed by reference, the address of a data item is passed to the function.
Hence, any change that is made to the data item (i.e. to the contents of the address) will reflect
in both the calling and called function. Thus, the use of a pointer as a function argument
permits the corresponding data item to be altered globally from within the function.

When pointers are used as arguments to a function, the formal arguments that are pointers
must each be preceded by an asterisk. Also, if a function declaration is included in the calling
portion of the program, the data type of each argument that corresponds to a pointer must be
followed by an asterisk. Both of these points are illustrated in the following example.

#include<stdio.h>

void change(int *a); // Function Declaration

void main()

65

{

int a = 10;

change(a);

printf(“Value after calling change function: %d\n”, a);

change_ptr(&a);

printf(“Value after calling change_ptr function: %d\n”,a);

}

void change(int a)

{

a = a+1;

printf(“Value inside change function: %d\n”, a);

}

void change_ptr(int *a)

{

*a = (*a)+1;

printf(“Value inside change_ptr function: %d\n”, a);

}

The main program first calls change() function with a copy of a, hence, within the function its
value is incremented, but when it returns back, the value of original ‘a’ is still 10. Then it calls
the second function change_ptr(), where it sends a copy address of ‘a’ and hence, the indirection
operator manipulates data at the actual location where a is allocated space. So the change in
value reflects back in the main function, and new value will be printed. The final output from
the program is similar to the following:

Value inside change function: 11

Value after calling change function: 10

Value inside change_ptr function: 11

Value after calling change_ptr function: 11

Operations on Pointers (Pointer Arithmetic)

In the previous section addition of an integer to a pointer variable is illustrated. The integer
value is interpreted as an array subscript; it represents the location of the desired array element
relative to the first element in the array. This works because all of the array elements are of the
same data type (so each array element occupies the same number of bytes), and all elements
are allocated space contiguously. The actual number of memory cells separating the two array
elements will depend on the data type of the array, though this is taken care of automatically
by the compiler.

Suppose, for example, that px is a pointer variable representing the address of some variable x.
We can write expressions such as ++px, —px, (px +3), (px+i) and (px-i), where I is an integer
variable. Each expression will represent an address located some distance from the original
address represented by px. The exact distance will be the product of the integer quantity and

66

the number of bytes associated with thedata item to which px points. Suppose, for example,
that px points to an integer quantity, and each integer quantity requires 2 bytes of memory.
Then the expression (px+3) will result in an address 6 bytes beyond the integer to which px
points.

Example: Consider the simple C program shown below.

#include <stdio.h >

main ()

{

int px; // pointer to an integer

int I = 1;

float f = 0.3;

double d = 0.005;

char c = ‘*’;

px = &I;

printf (“values: i=%di f=%fd=%fc=%c\n”, I, f, d, c);

printf(“Addresses:&i=%x&d=%x&c=%x\n”,&I, &f,&d,&c);

printf(“Pointer values:px=%xpx + 1=%xpx + 2=%x, px +3=%x\n”,

px, px+1, px +2, px +3);

}

Passing Functions to Other Functions

A function’sname gives the address of that function which means the name of the function
being declared becomes a pointer to that function. The advantage of using pointers to functions
is that a function can be passed to another function dynamically during runtime.

When a function accepts another function’s name as an argument, a formal argument declaration
must identify that argument as a pointer to another function. In its simplest form, a formal
argument that is a pointer to a function can be declared as

<data type> (*function-name) ();

Where, datatype refers to the data type of the return value of the function. This function can
then be accessed by means of the indirection operator. To do so, the indirection operator must
precede the function name (i.e. the formal argument). Both the indirection operator and the
function name must be enclosed in parentheses, that is,

(*function-name)(argument 1, argument 2, …. Argument n);

where argument 1, argument 2, ….., argument n refer to the arguments required in the function
call.

More about Pointer Declarations

Before leaving this chapter we mention that pointer declarations can become complicated, and
some care is required in their interpretation. This is especially true of declarations that involve
functions or arrays.

67

One difficulty is the dual use of parentheses. In particular, parentheses are used to indicate
functions, and they are used for nesting purposes (to establish precedence) within more
complicated declarations. Thus, the declaration

int (*p)(int a);

indicates a pointer to a function that accepts an integer argument, and returns an integer. In this
declaration, the first pair of parentheses is used for nesting, and the second pair is used to
indicate a function.

The interpretation of more complex declarations can be increasingly difficult. For example,
consider the declaration

int *(*p)(int (*a)[]);

In this declaration, (*p)(….) indicates a pointer to a function. Hence, int *(*p)(….) indicates a
pointer to a function that returns a pointer to an integer. Within the last pair of parentheses (the
function’s argument specification), (*a)[] indicates a pointer to an array. As a result, int (*a)[
] represents a pointer to an array of integers. Putting the pieces together, (*p) (int (*a) [])
represents a pointer to a function whose argument is a pointer to an array of integers. Hence,
the entire declaration.

Int *(*p) (int (*a)[]);

represents a pointer to a function that accepts a pointer to an array of integers as an argument,
and returns a pointer to an integer.

Remember that a left parenthesis immediately following an identifier name indicates that the
identifier represents a function. Similarly, a left square bracket immediately following an
identifier name indicates that the identifier represents an array. Parentheses that identify
functions and square brackets that identify array have a higher precedence than the unary
indirection operator (see Appendix C). Therefore, additional parentheses are required when
declaring a pointer to a function or a pointer to an array.

The following example provides a number of illustrations.

Example: Several declarations ranging from simple to complex involving pointers are shown
below.

 Int *p; p is a pointer to an integer quantity

 int *p[10] p is a 10-element array of pointers to integers

 int (*p)[10] p is a pointer to a 10-element integer array

 int *p(void); p is a function that returns a pointer to an integer

 int p(char *a); p is a function that accepts a pointer to a character andreturns an
integer

 int *p(char *a); p is a function that accepts a pointer to a character and returns a
pointer to an integer

 int (*p) (char *a) p is a pointer to a function that accepts a pointer to a character and
returns an integer

 int *p(char (*a)[]); p is a function that accepts a pointer to a character array and returns
an integer

 int *p(char *a[]); p is a function that accepts an array of pointers to characters and
returns an integer

68

 int *p (char *a[]); p is a function that accepts a character array and returns a pointer
to an integer

 int *p(char (*a)[]); p is a function that accepts a pointer to a character array and returns
a pointer to an integer

 int *(*p)(char(*a)[]); p is pointer to a function that accepts an array of pointers to
characters and returns a pointer to an integer

 int (*p[10])(void); p is a 10-element array of pointers to functions where each function
has no argumentsand returns an integer

 int *(*p[10])(char *a); p is a 10-element array of pointers to functions whereeach function
accepts a pointer to character, and returns a pointer to an integer

Table 6.1

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is a pointer?

..

..

..

6.3 STRINGS

String is a chain of characters represented as an array of characters in C language. Hence,
there is no special data type as string in c, except that they are treated differently in C. Following
are some of the salient features of strings in C:

 Strings are enclosed in double quotes

 Two consecutive strings without anything between them are automatically concatenated

 Strings are represented as array of characters

 String name gives the address of the first character in that string (since it is an array)

 Numerous string operations are provided in standard library

 Special characters will be escaped with a reverse slash (\) as \n for new line, \a for
audible bell, \t for tab character \” for double quote within double quotes …

 All strings will have a NULL character (\0) appended at the end, which marks the
termination of the string. Hence the size of string is one character more than length of
the string.

Declaring a string is as simple as declaring an array of characters. The following declares a
string that can take up to 19 characters long string (last one is for NULL character).

Char name[20];

If the string is initialized while declaring it, the dimension can be omitted as in

char name[] = “The C Tutorial”;

69

where name is allocated the required size (15 bytes in this case) automatically by the compiler.

Since one dimensional array can be represented with a pointer, the above declaration can be
represented with

char *name = “The C Tutorial”;

where name is a pointer to character type data and points to ‘T’ in the allocated space of 15
characters. Once, a pointer is declared, there is no difference between an array and a string
except that the strings are terminated with a NULL (‘\0’) character in C.

Consider the following example:

charname[] = “The C Tutorial”;

main ()

{

printf (&name[0]);

printf(“\n”);

printf (name);

}

The String is defined as an array of characters which will have a size of 15, since the string
length is 14 including spaces and the terminating ‘\0’ character at the end. Both printf statements
will print the same string while the printf(“\n”) provides the new line between them.

Putting and Getting Strings

Two very useful functions for printing and reading strings are puts() and gets().

The puts() function puts a string to the standard output device (generally the screenbut could
be re-directed) on your system. The gets() function will get a string from the standard input
device (generally the keyboard but can be altered with redirection) on your system.

To put a string to the standard output the address of the array containing the string needs to be
passed to the function. This can be done in one of two ways. Either you pass the array name or
a pointer to the array.

#include<stdio.h>

char name [] = “The C Tutorial”

main ()

{

char *ptr;

ptr = &name[0];

puts (ptr);

puts (name);

}

Copying Strings

In many cases, a string may be copied into another, which is taken care by strcpy function of C
library.Internally, this is copying the elements of one array to another. The strcpy() function
requires two arguments. The first is the address of the target array into which the string is to be
copied, and the second is the address of the source array containing the original string.

70

#include <stdio.h>

char name [20];

main ()

{

char buffer [20];

printf (“please enter your name”);

gets (buffer);

strcpy (name, buffer);

puts (name);

}

The above program reads a name into buffer first and then copies it into name. Care must be
taken to see that the target array size is at least equals the source size.

Joining Strings

Another important task with strings is joining (also known as concatenation) two strings. This
is so common that many languages allow the use of + sign, but nfortunately is not. Concatenating
two strings is done with another library function called strcat().

#include <stdio.h>

charname[] = “Kumar”;

char first_name [] = “Ram”;

charbuffer [80];

main ()

{

strcpy (buffer,first_name);

strcat (buffer, “”);

strcat (buffer,name);

puts (buffer);

}

The strcat function takes two arguments, where the first argument is the main string and the
second argument is the string to add to the first argument. The first string should be large
enough to contain both the strings and the NULL character at the end.

Finding the Length of Strings

Finding the length of a string is important in many cases like checking an empty string, checking
if a string is too long etc. C provides a simple function strlen(). This takes only the string as
argument for which length is to be obtained and will returns its length.

#include<stdio.h>

charname [80];

main ()

71

{

int length;

puts(“Enter your name”);

gets(name);

length = strlen (name);

printf (“Your name is %d characters long.\n”,length);

}

Comparing Strings

Another standard function that is used frequently is comparing two strings using strcmp().
This is equivalent of == that is used in integer variables. It takes two strings and compares
them. If they are same it returns 0, if the first string is greater than the second it returns a
positive value or otherwise it returns a negative value. In fact it checks the difference between
each character of first string with the corresponding second string’s character and if there is a
difference, it returns the difference. If both strings are identical, the difference even after the
last character is zero, hence zero is returned.

#include<stdio.h>

char answer [80];

main ()

{

static char capital []=”New Delhi”;

puts (“what is the capital city of the India?”);

gets (answer);

if (strcmp (capital, answer) == 0)

puts (“That is correct. “);

else

puts (“That is wrong”);

}

Concatenation of Constant Strings

Strings constants are automatically concatenated when they appear side by side. For example:

char *cptr = “this is” “ a test string”;

This is equivalent to char *cptr = “this is a test string”;

Obtaining parts of a String

Finding a substring from a given string is simply getting required characters into another array
and then placing a NULL character at the end of the resulting string. Following example
implements two functions to find the substring where the first one uses arrays and the other
uses pointers.

Example:

char* substring1 (char src[], int start, int len, char dest[])

{

72

 int I;

 for(i=0; i<len; i++)

{

dest[i] = src[start+i]; // assign each character

}

 dest[i] = ‘\0’; // Termination of destination string

 return dest;

}

char* substring2 (char* src, int start, int len, char* dest)

{

 int I;

 for(i=0; i<len; i++)

{

*(dest+i) = *(src+start+i); // assign each character

}

 *(dest+i) = ‘\0’; // Termination of destination string

 return dest;

}

void main()

{

char src[] = “This is a test string”;

char dest[21];

char *p;

p = substring1(src, 5,9, dest); // results in: is a test

printf(“Main String: %s\n”, src);

printf(“Substring1 5,9: %s\n”, dest);

printf(“Substring1 5,9 with pointer: %s\n”, p);

p = substring2(src,10,11, dest); // results in: test string

printf(“Substring2 10,11: %s\n”, dest);

printf(“Substring2 10,11 with pointer: %s\n”, p);

}

Care should be taken so that start+length is always less than the total length of the string.
Similarly the dest array should have enough space to hold the substring plus NULL.

Following is a summary of various string functions available in C which are frequently used:

73

Function

strcat

strcpy

Strncpy

Strcmp

Strncmp

Strcasecmp

Strncasecmp

Strlen

Strncat

Strchr

Strrchr

Strstr

Header File

string.h

string.h

string.h

string.h

string.h

strings.h

strings.h

string.h

string.h

string.h

string.h

string.h

Signature

c h a r * s t r c a t (c h a r
*string1, char *string2);

c h a r * s t r c p y (c h a r
*string1, char *string2);

c h a r * s t r n c p y (c h a r
*string1, char *string2,
int count);

int strcmp(char *string1,
char *string2);

intstrncmp(char *string1,
char *string2, int count);

i n t s r t c a s e c m p (c h a r
*string1, char *string2);

in ts t rncasecmp(char
*string1, char *string2,
int count);

int strlen(char *string);

c h a r * s t r n c a t (c h a r
*string1, char *string2,
int count);

char *strchr(char *string,
int c);

c h a r * s t r r c h r (c h a r
*string, int c);

char*strstr(char *string1,
char *string2);

Remarks

Concatenates string2 to string1 and
returns pointer to the first string

Copies string2 into string1 and
returns pointer to the first string.

Copies up to count characters of
string2 to string1 and returns
pointer to the first string.

Compares the value of string1 to
string2 and returns –ve or 0 or +ve
number.

Compares up to count characters of
string1 and string2 and returns –ve
or 0 or +ve number.

Compares strings without case
sensitivity.

Compares strings without case
sensitivity up to count characters.

Calculates and returns the length of
string.

Concatenates up to count characters
of string2 to string1 and returns the
first string.

Locates the first occurrence of c in
string and returns a pointer to that
location.

Locates the last occurrence of c in
string and returns a pointer to that
point.

Returns a pointer to the first
occurrence of string2 in string1.

Table 6.2

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What is a string?

..

..

..

74

6.4 SUMMARY
Computer stores data in bits and bytes only. Every data item occupies one or more contiguous
memory cells (i.e., adjacent words or bytes). The number of memory cells required to store a
data item depends on the type of data item. For example, a single character will typically be
stored in 1 byte (8 bits) of memory, an integer usually requires two or four contiguous bytes, a
floating-point number may require four contiguous bytes, and a double-precision quantity
may require eight contiguous bytes. The memory cells are sequentially numbered from 0 to
maximum memory available.Pointer variables must be declared before they are used in a C
program. The declaration is<data-type> *<variable> here the interpretation of a pointer
declaration is differentthan the interpretation of other variable declarations.When a pointer
variable is declared, the variable name must be preceded by an asterisk (*) which informs the
compiler that the variable is a pointer. The data type refers to the data type of the object stored
at the address given by the pointer.When pointers are used as arguments to a function, the
formal arguments that are pointers must each be preceded by an asterisk. Also, if a function
declaration is included in the calling portion of the program, the data type of each argument
that corresponds to a pointer must be followed by an asterisk.

String is a chain of characters represented as an array of characters in C language. Hence,
there is no special data type as string in c, except that they are treated differently in C. In many
cases, a string may be copied into another, which is taken care by strcpy function of C
library.Internally, this is copying the elements of one array to another. The strcpy() function
requires two arguments. The first is the address of the target array into which the string is to be
copied, and the second is the address of the source array containing the original string. Another
standard function that is used frequently is comparing two strings using strcmp(). This is
equivalent of == that is used in integer variables. It takes two strings and compares them. If
they are same it returns 0, if the first string is greater than the second it returns a positive value
or otherwise it returns a negative value. In fact it checks the difference between each character
of first string with the corresponding second string’s character and if there is a difference, it
returns the difference. If both strings are identical, the difference even after the last character
is zero, hence zero is returned.

6.5 CHECK YOUR PROGRESS MODEL ANSWERS

1. A pointer is an address variable which stores the address of a variable of particular data
type

2. A string is stream of characters followed by an end-of-string

6.6 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Explain how to pass pointers to functions with an example.

2. Describe pointer arithemetic with examples

3. Write a program to copy, concatenate strings?

II. Answer the following questions in about 15 lines each

1. Describe advantages of pointers.

2. Explain how to declare pointers of different data types with examples.

3. Desribe varios built-in functions of string in the table format.

75

6.7 GLOSSARY
strcmp : Compares the value of string1 to string2 and returns –ve or 0 or +ve

number

strlen : Calculates and returns the length of string

strcasecmp : Compares strings without case sensitivity up to count characters.

Strrchr : Locates the last occurrence of c in string and returns a pointer to that
point.

Strstr : Returns a pointer to the first occurrence of string2 in string1

76

77

 BLOCK - III

 DERIVED DATA TYPES

This block gives a brief study on creating, reading, printing one dimensional, two dimensional
and multi-dimensional arrays. Various operations on matrices such as addition, subtraction,
multiplication, transpose are explained with code examples in C. The concepts such as
creating, using the structures, accessing the members of the structures, creating and using
the unions are explained with easy to understand code examples. Creating a file, opening a
file, reading and writing on to files using different modes, copying, appending, sorting the
contents of files are discussed using crystal clear examples. Files are powerful features of C
language. Using files any kind of data can stored, manipulated, summarized, and analyzed
very easily.

The units included in the block are:

Unit-7: Arrays

Unit-8: Structures and Unions

Unit-9: Files

78

79

UNIT- 7: ARRAYS
Contents

7.0 Objectives

7.1 Introduction

7.2 One Dimensional, Two Dimensional, Multi-Dimentsional Arrays

7.3 Matrix Operations with Arrays

7.4 Storage Classes

7.5 Summary

7.6 Check your progress – Model Answers

7.7 Model Examination Questions

7.8 Glossary

7.0 OBJECTIVES

After studying this unit, you should be able to

 explainhow to define arrays in C

 describe various types of arrays in C language

 explain how to write programs to perform matrix operations with arrays

 understand storage classed in C

7.1 INTRODUCTION

A brief introduction to array is given earlier where the properties of an array are discussed.
Many applications require the processing of sets of data items that have common properties
(e.g., a set of numerical data, represented by x1, x2 … xn). In such situations it is often
convenient to represent the data as an array, where they will all share the same name (for
example, x). The individual data items can be of any data type but should be homogeneous.
Each array element is referred to by specifying the array name followed by non negative
integer subscripts, where each subscript is enclosed in a pair of square bracketsfunction returns
a value, then you can store the returned value. If a function is to use arguments, it must declare
variables that accept the values of the arguments. These variables are called the formal. Arrays
are defined just like ordinary variables, except that each array name must be accompanied by
a size specification (i.e. the number of elements). The expression is usually written as a positive
integer constant.In general terms. Matrices are two dimensional arrays in C and all manipulations
on matrices can be performed using index values for row and column to access an element. An
individual array element within a multidimensional array can be accessed by repeatedly using
the indirection operator. Usually, however this procedure is more awkward than the conventional
method for accessing an array element. The following example illustrates the use of the
indirection operator

7.2 ONE DIMENSIONAL, TWO DIMENSIONAL, MULTI-
DIMENTSIONAL ARRAYS

A brief introduction to array is given earlier where the properties of an array are discussed.

80

Many applications require the processing of sets of data items that have common properties
(e.g., a set of numerical data, represented by x1, x2 … xn). In such situations it is often
convenient to represent the data as an array, where they will all share the same name (for
example, x). The individual data items can be of any data type but should be homogeneous.

Each array element is referred to by specifying the array name followed by non negative
integer subscripts, where each subscript is enclosed in a pair of square brackets. Thus, in the n-
element array x, the array elements are x[0], x[1], x[2],…. X[n-1], as illustrated below.

Element x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

value 20 30 10 5 0 5 2 1

Table 7.1

Multi Dimensional Array

Multi dimensional arrays can be defined in C with number of square bracket pairs, equal to
dimension of the array. A[] represents a single dimensional array, A[][] represents a two
dimensional array, A[][][] represents a three dimensional array and so on. For example, x[i]
refers to an element in the one-dimensional array x, y[i][j] refers to an element in the two
dimensional array y.

Defining an Array

Arrays are defined just like ordinary variables, except that each array name must be accompanied
by a size specification (i.e. the number of elements). The expression is usually written as a
positive integer constant.In general terms, a multi-dimensional array may be defined as:

<data-type><array-name>[expression][expression][expression]…;

Where data-type is the data type, array-name is the array name, and expression is a positive
valued integer expression that indicates the number of array elements.

Example:

int items[10]; // 10 integers

int items[10*15]; // 150 integers

float values[10][3]; // 30 float values as 10 rows x 3 columns

char cube[3][3][3]; // 27 characters as 3 rows x 3 columns x 3 depth levels

char text [80]; // 80 characters

Array definitions can include the initial values if desired. The initial values must appear in the
same order of array elements, enclosed in braces and separated by commas. The general form
is

<data-type><array-name>[expression] = { value1, value2, ….. valuen};

Example:

int digits [10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

float x[6] = [0, 0.25, 0, -0.50, 0, 0];

char color [3] = [‘R’, ‘E’, “D’];

int table[2][3] = {{1,2,3}, {4,5,6}}; // Multi dimensional array initialization

81

If array elements are not initialized, they assume unpredictable values (random) and may yield
unpredictable results in the program.

Example : Consider the following array definitions.

int digits [5] = {3, 3, 3};// Partially initialized array with first 3 values (0,1,2) initialized

Here the digits[3] and digits[4] are not assigned values, and hence, assume unpredictable
values.

The array size need not be specified explicitly when initial values are included as a part of an
array definition.

Example:

int digits [] = {1, 2, 3, 4, 5, 6};

float x[] = {0, 0.25, 0, -0.5};

char color [3] = “RED”

char color [] = “RED”

Passing Array to a Function

An array name without square brackets can be used as an argument to a function, which passes
entire array to the function. When an array name is passed, actually passing the address of the
first element to the function, thus, it is not same as passing an ordinary variable. The
corresponding formal argument in the function declaration is written in the same manner. The
last dimension may be omitted by using empty brackets, but others must be defined properly.
For example, a one-dimensional array may be defined as a formal argument with empty brackets.
The size of the array is not specified within the formal argument declaration.

Example: The following program outline illustrates the passing of an array from the main
portion of the program to a function.

float average(int, float []); // Function declaration

main ()

{

int n=5; // variable declaration

float avg;// variable declaration

float list [n]={1.0f,2.0f,3.0f,4.0f,5.0f}; // array definition

avg = average (n, list); // function call with arguments

printf(“Average: %f\n”, avg);

}

/ / function definition with formal arguments

float average (int n, float x[])

{

int i;

float sum;

for(i=0;i<n; i++)

{

82

sum += x[i];

}

return (sum/(float)n;

}

Pointers and One Dimensional Arrays

The array name gives the address of the first element of the array, which means it is internally
a pointer to the first element in that array. Hence, if x is a one-dimensional array, then &x[0]
and x both refers to the address of the first array element. Moreover, the address of the second
array element can be written as either &x[1] or as (x + 1), and so on. In general, the address of
the (i + 1)th array element canbe expressed either as &x[i] or as [x + i]. Here adding i to x (the
address of the first element it is known as pointer arithmetic, which has a different meaning
than just arithmetic addition. An addition or deletion of i to pointer x gives the address of next
or previous ith element relative to x.

When writing the address of an array element in the form (x+i), the C compiler uses thesize of
each element to advance to the next or previous element automatically. The programmer must
specify only the address of the first array element (i.e. the name of the array) and the number
of array elements beyond the first (i.e. a value for the subscript). The value of i is also referred
to as an offset.

Since &x[i] and (x+i) both represent the address of the ith element of x, x[i] and *(x+i) both
represent the contents of that address, i.e. the value of the ith element of x. The two terms are
interchangeable. Hence, either term can be used in any particular application. The choice
depends upon the programmer’s individual preferences.Following is an example that illustrates
the relationship between array elements and their addresses

Example:

include <stdio.h>

main ()

{

int x[10, 11, 12, 13, 14, 15, 16, 17, 18, 19},

int i;

for (i = 0; i<10; ++i)

{

printf (“i= %dx[i]= %d*(x+i)= %d&x[i] = %x x+i=%x\n”,

i, x[i], *(x+i), &x[i], x+i);

}

}

Above program when run, will give you values of each element of the array using both array
and pointer representations respectively.

Multi Dimensional Arrays and Pointers

A two dimensional array is a collection of one-dimensional arrays. Therefore, a two-dimensional
array can be defined as a pointer to a group of contiguous one-dimensional array. A
twodimensional array declaration can be written as

<data type>(*<pointer variable>) [<expression2>];

83

rather than

<data type><array name> [<expression 1>][<expression 2>];

This concept can be generalized to higher dimensional arrays, that is,

<data type> (*<pointer variable>)[<expression 2>][<expression 3>]…[<expression n>];

Replaces

<datatype><array name> [<expression 1>][<expression 2>]…[<expression n>];

In these declarations data type refers to the data type of the array, pointer variable is the name
of the pointer variable, array name is the corresponding array name, and expression 1, expression
2, … expression n are positive valued integer expressions that indicate the maximum number
of array elements associated with each subscript.

Notice thatthe asterisk and the pointer name are surrounded by parentheses. These parentheses
must be present. Without them the program will define an array of pointers rather than a
pointer to a group of arrays, since these particular symbols (i.e., the square brackets and the
asterisk) would normally be evaluated right-to-left.

Example: Suppose that x is a two-dimensional integer array having 10 rows and 20 columns.
We can declare x as

int(*x)[20];

Rather than

int x[10][20];

In the first declaration, x is defined to be a pointer to a group of contiguous, one-dimensional,
20-element integer arrays. Thus x points to the first 20 element array, which is actually the
first row (row 0) of the original two dimensional array. Similarly, (x+1) points to the second
20-element array, which is the second row (row 1) of the original two-dimensional array, and
so on, as illustrated below:

x 1st one-dimensional array

(x+1)
2nd one-dimensional a array

… … … … …

(x +9)
10th one-dimensional ar array

Figure 7.1

84

In the above example, if size of each element is 2 bytes, x+1 advances the pointer by 2x20 = 40
bytes.

Now consider a three-dimensional floating-point array t. This array can be defined as

float (*t) [20][30];

instead of

float t[10][20][30];

In the first declaration, t is defined as a group of contiguous, two-dimensional, 20x30 floating
point arrays. Hence, t points to the first 20x30 array, (t + 1) points to the second 20 x 30 array,
and so on.

An individual array element within a multidimensional array can be accessed by repeatedly
using the indirection operator. Usually, however this procedure is more awkward than the
conventional method for accessing an array element. The following example illustrates the
use of the indirection operator.

Example: Suppose that x is a two-dimensional integer array having 10 rows and 20 columns,
as declared in the previous example. The item in row 2, column 5 can be accessed by writing
either

x[2][5] or as *(*(x + 2) + 5)

The second form requires some explanation. First, note that (x+2) is a pointer to row2. Therefore,
the object of this pointer, *(x+2), refers to the entire row. Since row 2 is a one-dimensional
array, (x + 2) is actually a pointer to the first element in row 2. We now add 5 to this pointer.
Hence, ((x+2) +5) is a pointer to element 5(the sixth element)in row 2. The object of this
pointer, *(*x+2)+5), therefore refers to the item in column 5 of row 2, which is x[2][5].

Programs that make use of multidimensional arrays can be written in several different ways. In
particular, there are different ways to define the arrays, and different ways to process the
individual array elements. The choice of one method over another is often a matter of personal
preference. In applications involving numerical arrays, it is often easier to define the arrays in
the conventional manner, thus avoiding any possible subtleties associated with initial memory
assignments. The following examples, however, illustrates the use of pointer notation to process
multidimensional numerical arrays

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is an Array?

...

...

..

7.3 MATRIX OPERATIONS WITH ARRAYS

Matrices are two dimensional arrays in C and all manipulations on matrices can be performed
using index values for row and column to access an element. Following example shows how
to add or multiply two matrices. The program reads two matrices from keyboard and then adds
them to get sum and multiplies them to get product.

#include <stdio.h>

85

// Function to read a given matrix with given rows and columns

void read_matrix(int mat[][], int rows, int cols)

{

int r, c;

for (r = 0; r < rows; r++)// for each row

{

for (c = 0; c < cols; c++)// for each column

{

printf(“Enter value for [%d][%d]: “, r, c); // show message

scanf(“%d”, &mat[r][c]); // read element

}

}

return;

}

// Function that prints a given matrix with given rows and columns

void print_matrix(int mat[][], int rows, int cols)

{

int r, c;

for (r = 0; r < rows; r++) // for each row

{

for (c = 0; c < cols; c++) // for each column

{

printf(“%d\t”, mat[r][c]); // print element

}

printf(“\n”); // end of a row, so print a newline

}

return;

}

// Matrix multiplication function that takes

// two input matrices and one output matrix

// row and column sizes of input matrices

// It returns 0 (false) on failure or tru if successful and then res will be filled with data

int multiply_matrix(int mat1[][], int mat2[][], int res[][], int r1,int c1, int r2, int c2)

{

86

int i, j, k, sum;

if(c1 != r2)

{

printf(“First matrix columns not same as second matrix rows\n”);

return 0; // false

}

for (i = 0; i < r1; i++) for each row

{

for (j = 0; j < c2; j++) // for each column

{

sum = 0;

for (k = 0; k < c1; k++)

{

sum = sum + mat1[i][k]*mat2[k][j];

}

res[i][j] = sum;

}

}

return 1; // true

}

// Matrix addition function that takes

// two input matrices and one output matrix

// row and column sizes of input matrices

// It returns 0 (false) on failure or tru if successful and then res will be filled with data

int add_matrix(int mat1[][], int mat2[][], int res[][], int r1,int c1, int r2, int c2)

{

int i, j, k, sum;

if(r1 != r1 || c1 != c2)

{

printf(“Matrix sizes are not same\n”);

return 0;// false

}

for (i = 0; i < r1; i++) // for each row

{

87

for (j = 0; j < c1; j++) // for each column

{

res[i][j] = mat1[i][j]+mat2[i][j];

}

}

return 1;// true

}

int main()

{

int r1, c1, r2,c2, res;

int mat1[20][20], mat2[20][20], result[20][20];

printf(“Array size should be less than 20\n”);

printf(“Enter number of rows and columns of mat1 matrix: “);

scanf(“%d%d”, &r1, &c1);

read_matrix(mat1, r1,c1);

printf(“Enter number of rows and columns of mat2 matrix: “);

scanf(“%d%d”, &r2, &c2);

read_matrix(mat2, r2,c2);

printf(“Matrix 1\n”);

print_matrix(mat1,r1,c1);

printf(“Matrix 2\n”);

print_matrix(mat2,r2,c2);

res = multiply_matrix(mat1,mat2,result,r1,c1,r2,c2);

if(res)

{

printf(“Product\n”);

print_matrix(result, r1,c2);

printf(“\n”);

}

res = add_matrix(mat1,mat2,result,r1,c1,r2,c2);

if(res)

{

printf(“Sum of Matrices\n”);

print_matrix(result, r1,c1);

88

printf(“\n”);

}

return 0;

}

The above program can be added the third function for subtraction by suitably modifying the
add matrix function.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What is a matrx?

..

..

..

7.4 STORAGE CLASSES

Storage Class defines the scope, visibility and life of a variable during the runtime of a program.
C language supports 4 storage classes:

 auto

 extern

 static

 register

Any of these can precede the actual variable definition to alter the storage class of that variable.
For example, to make a variable static, it is declared as:

static int a = 0;

or more generally,

<storage class><data type><variable>

 auto: This is the default storage class for all the variables and hence it may be omitted
in declaration. Auto variables are available only within the block and when the block
ends, these variables are freed. They are uninitialized when created, which means the
initial value is a garbage value (unknown or unpredictable).

 extern: Extern storage class allows a variable to be defined in someother block and is
used in another block or even in another file of the same project (effectively they are
global variables). These must be properly initialized where it is declared before it is
used in another block. Generally external storage class is used for variables spanned in
different files in large multi file programs.

 static: Static variables are declared as global variables with local scope (within block).
Hence, they retain the value even after they are out of their scope if they are declared
within a block. They are initialized only once and exist till the end of program. By
default, they are initialized to 0 by the compiler.

89

 register: Register variables are similar to the auto variables but they will be declared in
the CPU registers if possible. Hence, it is a request but not guaranteed. If they find space
in registers, they can be accessed faster and hence the overall performance will improve.
Usually a few frequently used variables are declared as register keywords since the
registers in a CPU are limited. Address of a register variable cannot be obtained and
hence pointers cannot be used. Following table summarizes the properties of storage
classes:

Storage class Storage Area Initial Value Scope Life
Specifier

auto Stack Unspecified Block End of Block

extern Data 0 Global End of Program
Segment Multi-file

static Data 0 Block End of Program
Segment

register CPU Register Unspecified Block End of Block
or Stack

Table 7.2

Example: The following example shows the usage of different storage classes:

#include <stdio.h>

int x; // Global variable, which will be used as extern later

void test()

{

auto int a = 5; // auto is optional

register int b = 10; // register variable

static int c = 20;

extern int x;

printf(“Value of a: %d\n”,a);

printf(“Value of b: %d\n”,b);

printf(“Value of c: %d\n”,c);

printf(“Value of x: %d\n”,x);

a++;

b++;

c++;

x++;

}

90

int main()

{

x = 1; // Initialize x to 10

test(); // call test function

printf(“Value of x: %d\n”,x);

x=20;

test(); // call test again

printf(“Value of x: %d\n”,x);

return 0;

}

Pay attention to the values of variables printed. The static variable is initialized only once,
hence the second call will print the incremented value. Similarly the extern variable cab be
modified from bothmain and test functions.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

3. What are the various storage classes in C?

...

...

...

7.5 SUMMARY

In C, Each array element is referred to by specifying the array name followed by non negative
integer subscripts, where each subscript is enclosed in a pair of square brackets. Thus, in the n-
element array x, the array elements are x[0], x[1], x[2],…. x[n-1]. Multi dimensional arrays
can be defined in C with number of square bracket pairs, equal to dimension of the array. A[]
represents a single dimensional array, A[][] represents a two dimensional array, A[][][] represents
a three dimensional array and so on.Programs that make use of multidimensional arrays can be
written in several different ways. In particular, there are different ways to define the arrays,
and different ways to process the individual array elements. The choice of one method over
another is often a matter of personal preference. In applications involving numerical arrays, it
is often easier to define the arrays in the conventional manner, thus avoiding any possible
subtleties associated with initial memory assignments.Storage Class defines the scope, visibility
and life of a variable during the runtime of a program. C language supports 4 storage classes
known as auto, extern, register and static. The array name gives the address of the first element
of the array, which means it is internally a pointer to the first element in that array. Hence, if x
is a one-dimensional array, then &x[0] and x both refers to the address of the first array element.
Moreover, the address of the second array element can be written as either &x[1] or as (x + 1),
and so on. In general, the address of the (i + 1)th array element canbe expressed either as &x[i]
or as [x + i]. Here adding i to x (the address of the first element it is known as pointer arithmetic,
which has a different meaning than just arithmetic addition. An addition or deletion of i to
pointer x gives the address of next or previous ith element relative to x.

91

7.6 CHECK YOUR PROGRESS MODEL ANSWERS

1. Arrays are defined just like ordinary variables, except that each array name must be
accompanied by a size specification

2. A matrix is represented as a two dimensional array in C language

3. auto, extern, static, register

7.7 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Explain how to read,print one dimension, two dimensional arrays.

2. Describe pointers and arrays with examples programs

3. Write a program to add and multiply two matrices?

II. Answer the following questions in about 15 lines each

1. Write a program to pass arrays as function arguments.

2. Explain various storage classes in C.

3. Write a program to demonstrate various storage classes in C.

7.8 GLOSSARY

Array : A group of variables stored consecutively of similar data type

Two Dimensional Array: An array contains rows and columns just like a table

static : Storage class in C, which enable sharing a variable for all
modules

Matrix :Represented as two dimensional array in C

92

UNIT- 8: STRUCTURES AND UNIONS
Contents

8.0 Objectives

8.1 Introduction

8.2 Structures

8.3 Unions

8.4 Summary

8.5 Check your progress – Model Answers

8.6 Model Examination Questions

8.7 Glossary

8.0 OBJECTIVES

After studying this unit, you should be able to

 explainhow to define and use structures in C

 describe tydef statement in C language

 understand pointers to structures

 explain how to pass structures to functions in C

8.1 INTRODUCTION

Structure is a collection of heterogeneous data items. Consider that name, age and salary are
the three attributes pertaining to a person. These can be represented with an array of characters
(name), integer (age) and a float number (salary). In C language. The members of a structure
can be processed as separate entities by accessing individual structure members. A structure
member can be accessed with a dot as <variable>.<member> where variable is a structuretype
variable, and member refers to the name of one of its members. The dot between variable
name and its member is an operator, which is in the highest precedence group, and its
associativity is left-to-right. The beginning address of a structure can be accessed with
ampersand (&) just like any other variable. A pointer to the structure type variable is defined
as type*ptvar where type is a data type that identifies the composition of the structure, and
ptvar represents the name of the pointer variable. A pointer can be assigned the beginning
address of a structure variable using:ptvar = &variable. Unions resemble structures and contain
members of different data types just like structures. However, unlike structures, these members
share the same storage area in the memory, whereas each member within a structure is assigned
its own unique storage area. They are useful where an application uses multiple variables
butonly one variable is used at a time, thus conserves space. Since a union shares common
location for all its members, the size will be decided by the largest member. The user is
responsible to keep track of what type of information is stored at any given point of time. An
attempt to access the wrong type of information will produce meaningless results. Unions
resemble structures and contain members of different data types just like structures. However,
unlike structures, these members share the same storage area in the memory, whereas each
member within a structure is assigned its own unique storage area. They are useful where an
application uses multiple variables butonly one variable is used at a time, thus conserves

93

space. Since a union shares common location for all its members, the size will be decided by
the largest member.

8.2 STRUCTURES

Structure is a collection of heterogeneous data items. Consider that name, age and salary are
the three attributes pertaining to a person. These can be represented with an array of characters
(name), integer (age) and a float number (salary). In C language, this can be represented with

char name[80]; int age; float salary;

Now if there are many persons to be represented, one option is to declare each attribute as an
array as

char name[10][80], int age[10], float salary[10]; where the number of persons is assumed to
be 10.

However, to access the details of one person, each array has to be accessed with corresponding
index, which is impractical and error prone if the number of attributes is large. C provides a
convenient way to create a new data type within the program that contains other elements as
members which is known as structure. A structure is handy in such situations, where the data
is heterogeneous but related.

Defining a Structure

A structure must be defined in terms of its individual members as follows:

struct tag {

member 1;

member 2;

. . .

member m;

} [optional list of variables of this type separated by commas];

In this declaration, ‘struct’ is the required keyword, tag is a name that identifies structures of
this type, and member 1, member2 ….,member m are individual member declarations.

The individual members can be ordinary variables, pointers, arrays, or other structures.
Following points may be remembered when using structures:

The member names within a particular structure must be distinct from one another. However,
a member name can be the same as the name of a variable defined outside of the structure.

A storage class cannot be assigned to an individual member

Individual members cannot be initialized within a structure-type declaration.

Once the composition of the structure has been defined, individual structure-type variables
can be declared as follows:

<storage class> struct tag <variable 1, variable 2, ….., variable n>;

Where storage-class is optional, struct is a required keyword, tag is the name that appeared in
the structure type declaration, and variable 1, variable 2, …., variable n are variables of type
struct tag.

Example : A typical structure declaration is shown below.

94

struct person {

char name[80];

int age;

float salary;

};

Usinga Structure

The members of a structure can be processed as separate entities by accessing individual
structure members. A structure member can be accessed with a dot as <variable>.<member>

Where variable is a structuretype variable, and member refers to the name of one of its members.
The dot between variable name and its member is an operator, which is in the highest precedence
group, and its associativity is left-to-right.

Example: Consider the following structure declarations:

struct date {

int day;

int month;

int year;

};

struct account {

char name[80];

int acct_no;

char acct_type;

float balance;

struct date opened_date;

} customer;

In this example customer is a variable of type account and opened_date inside account is a
type of date structure which has its own members (day month, and year). Any element within
the customer structure can be accessed using a dot operator as follows:

customer, acct_no, customer.opened_date.year, customer.name and so on.

The dot operator takes precedence over the unary operators as well as the various arithmetic,
relational, logical and assignment operators since it is a member of the highest precedence
group.. For example, an expression of the form ++customer.acct_no is equivalent to
++(variable.member) which means, the ++ operator will apply to the structure member, not
the entire structure variable. Similarly, the expression &variable.member is equivalent to
&(variable member); thus, the expression accesses the address of the structure member, not
the starting address of the structure variable.

User-Defined Data Types (typedef)

The typedefallows users to define new data types that are equivalent to existing data types.
Once a user-defined data type is defined, new variables, arrays, structures, and so on, can be
declared in terms of this new data. The syntax for typedef is:

95

typedef <existing data type><new data type>;

The new data type will be new in name only. In reality, this new data type will not be
fundamentally different from one of the standard data types.

Example: Here is a simple declaration involving the use of typedef.

typedef int age ;

In this declaration age is a user-defined data type equivalent to type int. Hence, the variable
declaration

agemale, female;

is equivalent to writingint male, female;

The advantage of declaring age as integer is that if the data type is to be changed, it is done
only at the definition, and it reflects throughout the program. For example, typedef unsigned
char age;will automatically converts all variables to unsigned characters in one stroke. The
typedef feature is very convenient when defining structures, since it eliminates the need to
repeatedly write struct tag whenever a structure is referenced. As a result, the structure can be
referenced more concisely. In addition, the name given to a user-defined structure type often
suggests the purpose of the structure within the program. A user-defined structure type can be
written as:

typedef struct{

member 1;

member 2;

. . .

member m;

}new-type;

where new-type is the user-defined structure type. Structure variables can then be defined in
terms of the new data type. Following example creates a new data type called “record” and
declares some variables of type record.

typedef struct{

char name [80];

int acct-no;

char acct-type;

float balance;

}record;

record oldcustomer, newcustomer;

A structure can be initialized while declaring a variable by assigning data in curly braces as
follows:

record oldcustomer = {“Customer name”, 111, ‘R’, 1000.1};

Here the members are assigned corresponding values in the same order of the member
declaration.

96

Pointers to Structures

The beginning address of a structure can be accessed with ampersand (&) just like any other
variable. A pointer to the structure type variable is defined as

type*ptvar;

Where type is a data type that identifies the composition of the structure, and ptvar represents
the name of the pointer variable. A pointer can be assigned the beginning address of a structure
variable using:

ptvar = &variable;

Example : Consider the following structure declaration:

typedef struct{

char name [80];

int acct-no;

char lacct-type;

float balance;

} account;

accountcustomer,*pc;

In this example, customer is a structure variable of type account, and pc is a pointer variable
whose object is a structure variable of type account. Thus, the beginning address of customer
can be assigned to pc by writing

pc=&customer;

An individual structure member can be accessed in terms of its corresponding pointer variable
by writing

ptvar->member which is a short form for (*ptvar).member

Example:

typedefstruct{

int month;

int day;

int year;

} date;

struct{

int acct_no;

char acct_type;

char name[80];

float balance;

date last_payment;

} customer, *pc = &customer;

Notice that the pointer variable pc is initialized by assigning it the address of the structure
variable customer. In other words, pc will point to customer (start address of customer to be
more precise).

97

Now acct_no can be accessed in any of the following three methods:

customer.acct_no (or) pc->acct_no (or) (*pc).acct_no

The parentheses are required in the last expression because the period operator has a higher
precedence than the indirection operator (*). Without the parentheses the compiler generates
an error, because pc (a pointer) is not directly compatible with the dot operator.

Month of the last payment can be accessed by writing any of the following:

customer.last_payment.monthpc->last_payment.month(*pc).last_payment.month

Finally, the customer’s name can be accessed by writing any of the following:

customer.name pc->name (*pc).name

Therefore, the third character of the customer’s name can be accessed by writing any of the
following.

customer.name[2]pc->name[2](*pc).name[2]

(customer.name +2)pc-> (name +2)((*pc).name + 2)

A structure can also include one or more pointers as members. Thus, if ptmember is a pointer
of a variable, then *variable.ptmember will access the value to which ptmember points.
Similarly, if ptvar is a pointer variable that points to a structure and ptmember is a member of
that structure, then *ptvar->ptmember will access the value to which ptmember points.

Example: Following example declares an array of new user defined data type “person”. It then
reads two records from user and prints them using pointers.

#include <stdio.h>

typedef struct _person {

char name[80];

long number; } person;

void main()

{

person p[2];

int i;

for(i=0; i<2; i++)

{

printf(“Enter person %d’s name:”, i+1);

gets(p[i].name);

printf(“Enter person %d’s Number:”, i+1);

scanf(“%ld”, &(p[i].number));

getchar();

}

98

for(i=0;i<2;i++)

{

printf(“Person %d’s Name is: %s and number is %ld\n”,

i+1, (p+i)->name, (p+i)->number);

/*

The above is same as

printf(“Person %d’s Name is: %s and number is %ld\n”,

i+1, p[i].name, p[i].number);

(or)

printf(“Person %d’s Name is: %s and number is %ld\n”,

i+1, (*(p+i)).name, (*(p+i)).number);

*/

}

}

The program first declares a new data type called person which has two members (name and
number). It then declares an array of persons (p[2]). It then reads the data from keyboard using
a for loop. Notice that there is a getchar() function call at the end of reading for loop which
will exhaust the last enter character the user gives when entering the number. Care must be
taken always to flush the keyboard enter character when reading strings, which otherwise
takes the enter character as input and returns empty string before the user enters the actual
data. It then prints the data using the second for loop. Alternative use of pointers is also shown
in comments.

Passing Structures to Functions

A structure can be passed to a function as a parameter or can be returned from function. The
element is passed to a function using call by value mechanism which means it sends a copy of
the actual data and hence, any changes to the data in the function do not reflect back in the
calling function. If the changes made to a structure argument are to reflect in called function,
a pointer to the structure should be passed. The above program can be rewritten as follows to
demonstrate the structure passed to a function.

#include <stdio.h>

typedef struct _person {

char name[80];

long number; } person;

void printData(person, int); // Function declaration

void readData(person *, int); // Function declaration

void main()

{

person p[2];

99

int i;

for(i=0; i<2; i++)

{

readData(p+i, i);

}

for(i=0;i<2;i++)

{

printData(p[i], i);

}

}

void readData(person *p, int i)

{

printf(“Enter person %d’s name:”, i+1);

gets(p->name);

printf(“Enter person %d’s Number:”, i+1);

scanf(“%ld”, &(p->number));

getchar();

return;

}

void printData(person p, int i)

{

printf(“Person %d’s Name is: %s and number is %ld\n”, i+1, p.name, p.number);

}

In the above program, the reading and writing parts are moved to functions. Since the reading
requires changes to be reflected back in main program, it is sent as a pointer. The printing part
doesn’t change anything and hence data is sent as a value. Since the two functions are declared
after the main function, which uses these functions, C assumes them to return integer and the
functions are declared to return nothing (void) later, which is a conflict. To resolve, we declare
the function as prototype above main as given in the program.

Self Referential Structures

It is sometimes necessary to include a pointer of the same type within the definition of the
structure. Note that a pointer can only be declared inside the structure definition but not a
variable of the same type. If a variable is declared, its size becomes infinity and the compiler
terminates with a stack overflow message.

structtag {

member 1;

member2;

 . . .

100

struct tag *name;

};

where name refers to the name of a personand next references an element of the same tag type
variable. Thus, the structure of type tag will contain a member that points to another structure
of type tag. Such structures are known as self-referential structures. This type of definition is
used extensively in linked lists, trees and other data structures which beyond the scope of this
text.

Example:

structlist_element{

char name[40];

struct list_element*next;

};

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is structure in C?

...

...

...

8.3 UNIONS

Unions resemble structures and contain members of different data types just like structures.
However, unlike structures, these members share the same storage area in the memory, whereas
each member within a structure is assigned its own unique storage area. They are useful where
an application uses multiple variables butonly one variable is used at a time, thus conserves
space. Since a union shares common location for all its members, the size will be decided by
the largest member.

The user is responsible to keep track of what type of information is stored at any given point of
time. An attempt to access the wrong type of information will produce meaningless results.In
general terms, the composition of a union may be defined as:

uniontag {

member 1;

member 2;

. . .

member m;

};

where union is the required keyword and the othersare members of the union just as in case of
a structure definition. The tag is optional in this type of declaration. Variables of this type can
be defined like structure type variables as union tag x;If typedef is used, the new type can be
used to declare variables.

101

Arrays of unions can also be declared and used as in case of structures. A pointer to the union
also acts just like a pointer to a structure, except that it always points to the start address for all
the elements. Following example explains the basic usage of union.

#include <stdio.h>

typedef union _tag

{

long int intdata;

char strdata[20];

float floatdata;

char chardata;

} storage;

void main()

{

storage st, *p;

p = &st; // Assign address of structure to pointer p

printf(“Address of int: %x\n”, &(st.intdata));

printf(“Address of float: %x\n”, &(st.floatdata));

printf(“Address of int: %x\n”, &(st.strdata));

printf(“Address of int: %x\n”, &(st.chardata));

printf(“Size of union: %d\n”, sizeof(st));

printf(“Enter a name: “);

gets(st.strdata);

printf(“Name: %s\n”, st.strdata);

printf(“Name with pointer: %s\n”, p->strdata);

printf(“Enter a float number: “);

scanf(“%f”, &st.floatdata);

printf(“Float: %f\n”, st.floatdata);

printf(“Float with pointer: %f\n”, p->floatdata);

printf(“Enter an integer: “);

scanf(“%d”, &st.intdata);

printf(“Integer: %d\n”, st.intdata);

printf(“Integer using pointer: %d\n”, p->intdata);

printf(“Character: %c\n”, st.chardata);

// prints the first byte of integer as character, and has no meaning

}

102

Here we have four union variables, intdata, strdata, floatdata and chardata. The size is computed
based on the largest element, which is strdata which takes 20 bytes. Hence, the size of union is
20 bytes. If it were a structure, it would have taken (4+20+4+1 = 29 bytes) but many compilers
use word boundary (divisible by word size which is normally 2 or 4 bytes depending on the
compiler) which makes it 30 or 32 bytes depending on the compiler. The sizeof operator returns
the actual size computed by the compiler. Access to members is illustrated both with dot
notation and with a pointer notation.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What is union?

...

...

..

8.4 SUMMARY

Structure is a collection of heterogeneous data items. Consider that name, age and salary are
the three attributes pertaining to a person. These can be represented with an array of characters
(name), integer (age) and a float number (salary).An individual structure member can be
accessed in terms of its corresponding pointer variable by writingptvar->member which is a
short form for (*ptvar).member. A structure can also include one or more pointers as members.
Thus, if ptmember is a pointer of a variable, then *variable.ptmember will access the value to
which ptmember points. Similarly, if ptvar is a pointer variable that points to a structure and
ptmember is a member of that structure, then *ptvar->ptmember will access the value to which
ptmember points.A structure can be passed to a function as a parameter or can be returned
from function. The element is passed to a function using call by value mechanism which
means it sends a copy of the actual data and hence, any changes to the data in the function do
not reflect back in the calling function. If the changes made to a structure argument are to
reflect in called function, a pointer to the structure should be passed.It is sometimes necessary
to include a pointer of the same type within the definition of the structure. Note that a pointer
can only be declared inside the structure definition but not a variable of the same type. If a
variable is declared, its size becomes infinity and the compiler terminates with a stack overflow
message. Unions resemble structures and contain members of different data types just like
structures. However, unlike structures, these members share the same storage area in the
memory, whereas each member within a structure is assigned its own unique storage area.
They are useful where an application uses multiple variables butonly one variable is used at a
time, thus conserves space. Since a union shares common location for all its members, the size
will be decided by the largest member.

8.5 CHECK YOUR PROGRESS MODEL ANSWERS

1. Structure is a collection of heterogeneous data items called as memebers

2. Unions resemble structures and contain members of different data types just like
structures. However, unlike structures, these members share the same storage area in
the memory

103

8.6 MODEL EXAMINATION QUESTIONS
I. Answer the following questions in about 30 lines each

1. Write a program to demonstrate pointers and structures

2. Explain how to pass structures as arguments to functions with code examples

3. Write a program to demonstrate unions?

II. Answer the following questions in about 15 lines each

1. Describe self referential structures.

2. Explain typedef in C

3. Write a program to demonstrate defin and use structure

8.7 GLOSSARY

Structure ` : Structure is a collection of heterogeneous data items called as
memebers

Union : Unions resemble structures and contain members of different data
types just like structures. However, unlike structures, these members
share the same storage area in the memory

typedef : Defines user defined data types

ACCU : Association of C and C++ Users.

104

UNIT- 9: FILES
Contents

9.0 Objectives

9.1 Introduction

9.2 File Basics

9.3 Operations on Files and Commnd line Arguments

9.4 Summary

9.5 Check your progress – Model Answers

9.6 Model Examination Questions

9.7 Glossary

9.0 OBJECTIVES

After studying this unit, you should be able to

 explainhow to create, open, read files in C

 explainhow to find location of contenet in fles

 understand copying, concatenating, sorting files

 understaend commandline arguments in C

9.1 INTRODUCTION

A file is a sequence of data stored on the permanent storage medium like hard disk. The
programmer has freedom to choose where to store the file. In fact, in C, all input and output is
handled as files. For C the input comes from a special file which is designated as the standard
input device (generally the keyboard), and the output is sent to a special file known as standard
output device (generally the screen). A file can be opened in many ways as shown in the table
below. A file type can also be specified as text file or binary file. A text file is human readable
and the binary files are raw files, generally not readable by human beings. Every file is appended
with a special imaginary symbol known as “End of File”, defined as an integer constant in
stdio.h as EOF (generally represented with -1) to ensure that the program will terminate up on
encountering EOF. Every program should handle this EOF character to see that the program
avoids reading beyond the last character of the file. It is often useful to know where the current
location is in a file. This is especially important in case of random accessing of a file. The
function ftell() returns the offset of the file pointer from the start of the file as a long number.
It is very common to pass arguments to a program when the program is invoked from the
command line. For example, the ls program in Unix or dir command in Windows can take
arguments as ls a* or dir a* where ls or dir is the command and a* is the argument. This is
supported in C by modifying the main function’s parameter list. Information about command
line arguments is passed by the operating system to the entry function of the invoked program
by way of parameters, which is the main() function.

9.2 FILE BASICS

A file is a sequence of data stored on the permanent storage medium like hard disk. The
programmer has freedom to choose where to store the file. In fact, in C, all input and output is

105

handled as files. For C the input comes from a special file which is designated as the standard
input device (generally the keyboard), and the output is sent to a special file known as standard
output device (generally the screen).

There are three operations that can be performed with a file, viz., open it, access it, and close
it. A file is opened explicitly to read, or to be written or both. C provides a standard library for
all file based operations.

A file must be opened before it is accessed and must be closed when nothing more need to be
done. When a file is opened, C provides a pointer to a special structure called FILE, which
holds information pertaining to the file like the name, size, current location etc. This pointer is
now the handle for the file, and all operations require this pointer as reference, including the
close operation. The reading and writing operations on file are done exactly the same way as
they are done with keyboard and screen except that the function names are fprintf, fscanf,
fputs, fgets, fgetc, fputc etc. All these functions take the pointer to FILE structure as an extra
parameter.

Opening and Closing a File

A file can be opened using fopen command and can be closed with fclose command.

FILE *<pointer> = fopen(<file name>, <opening mode>);

fclose(<pointer>);

where pointer is the pointer variable that holds the address of a FILE structure if properly
opened, file name is the name of the file with full path and extension and opening mode is a
string describing the mode to open.

File opening modes

A file can be opened in many ways as shown in the table below. A file type can also be specified
as text file or binary file. A text file is human readable and the binary files are raw files,
generally not readable by human beings.

File – Type Specifications

 File-Type Meaning

 “r” Open an existing file for reading only.

 “w” Open a new file for writing only. If a file with the specified file-name
currently exists, it will be destroyed and a new file created in its place.

 “a” Open an existing file for appending (i.e. for adding new information at
the end of the file). A new file will be created if the file with the specified
file-name does not exist.

 “rw” Open an existing text file for read and write

 “r+” Open an existing file for both reading and writing.

 “w+’ Open a new file for both reading and writing. If a file with the specified
file-name currently exists, it will be destroyed and a new file created in
its place.

 “a+” Open an existing file for both reading and appending. A new file will be
created if the file with the specified file-name does not exist.

 “rb” Open an existing binary file for reading

 “wb” Open a new file for binary writing

 “ab” Open a binary file for appending

 “r+b” or “w+b” Open a binary file for read and write

 Table 9.1

106

Example: Following code snippet gives an example of how a file can be opened:

File *fp;

fp = fopen(“abc.txt”, “r”); // Open the file as a text file for reading only

fp = fopen(“abc.txt”, “w”); // File will be opened for writing. Any existing file will be lost

fp = fopen(“abc.txt”,”r+w”); // File will be created if doesn’t exist, or opened if exits.

fp = fopen(“abc.txt”, “a”); // File will be created or opened to append data at the end

fp = fopen(“abc.exe”,”rb”); // File will be opened in binary read only mode

fp = fopen(“abc.exe”, “wb”);// File will be opened in binary write mode

fp = fopen(“abc.exe”, “a+b”); // File will be opened in binary append and read mode

....

In all the cases, the next step is to check whether the file is opened or failed to open. This can
be done by checking if fp is NULL, which indicates a failure.

if(fp == NULL)

{

printf(“Cannot open the file\n”);

exit(1);

}

If it is not NULL, the file is properly opened and ready for read/write operations. Finally the
file must be closed with fclose function:

fclose(fp); // Close the file associated with pointer fp.

A skeletal program to use a file is given below:

#include <stdio.h>

FILE *fpt;

fpt = fopen(“sample.dat”, “r+”);

if (fpt == NULL)

{

printf (“\nERROR – Cannot open the file\n”);

else {

. . . // Actual file operations like read/write goes here

fclose (fpt);

}

End of File (EOF)

Every file is appended with a special imaginary symbol known as “End of File”, defined as an
integer constant in stdio.h as EOF (generally represented with -1) to ensure that the program
will terminate up on encountering EOF. Every program should handle this EOF character to
see that the program avoids reading beyond the last character of the file.

107

Implicit Files

C opens three files automatically when the stdio.h is included and the pointers to these three
files are available with standard names. These are “stdin” for input, “stdout” for output and
“stderr” for error output. Generally stderr and stdout refer to the screen (console). These are
automatically closed when the program ends and there is no necessity to explicitly close these
files.

Example: Following program creates a new file and writes some data into it. The file is created
in the default directory if path is not specified.

#include <stdio.h>

#include <stdlib.h>

void main()

{

FILE *fp;

char *fname = “test.txt”;

fp = fopen(fname, “w”);

if(fp == NULL)

{

printf(“Can not open file %s\n”, fname);

exit(1);

}

fprintf(fp, “This is a test file line 1\n”);

fprintf(fp, “This is a test file line 2\n”);

fprintf(fp, “This is a test file line 3\n”);

fprintf(fp, “This is a test file line 4\n”);

fprintf(fp, “This is a test file line 5\n”);

fclose(fp);

}

In the above program, a file is opened with a name taken from a variable (fname) and some
lines are printed to it using fprintf and finally the file is closed. After the run of this program,
the file “test.txt” can be found in the current directory (where the exe file is created) with the
given content.

Example: Following is a full example that reads the file contents and prints the data on the
screen. Open a text editor and create the text file “test.txt” in the same folder where the compiled
executable file exists or give the full path to the test.txt file something like
“C:\\users\\admin\\Desktop\\test.txt”. Note that the ‘\’ is escaped with one more ‘\’ as it has a
special meaning in strings in C.

#include <stdio.h>

#include <stdlib.h>

void main()

{

108

FILE *fp;

char *fname = “test.txt”;

int ch;

fp = fopen(fname, “r”);

if(fp == NULL)

{

printf(“Can not open file %s\n”, fname);

exit(1); // Exit the program with error code 1 (which may be used by the shell)

}

while((ch=fgetc(fp)) != EOF)

{

putc(ch, stdout);

}

fclose(fp);

}

In the above program the stdlib.h is included to get the definition of “exit(int n)” function,
which terminates the C program at that point. After opening the file, the program enters a
while loop where each character is read into ch and checked for EOF. If it is not EOF, print that
character using putc(character, file pointer) method, where the output file pointer is stdout,
which is by default available to all programs. Finally close the file after the while loop terminates
on encountering EOF.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is EOF?

...

...

……

9.3 OPERATIONS ON FILES AND COMMND LINE ARGUMENTS

Following program copies a file to another file by opening two files one for reading and the
other for writing, then copies character by character from source to destination.

#include <stdio.h>

#include <stdlib.h>

void main()

{

FILE *fpin, *fpout;

109

char *finname = “test.txt”;

char *foutname = “test-out.txt”;

int ch;

fpin = fopen(finname, “r”);

if(fpin == NULL)

{

printf(“Can not open file %s\n”, finname);

exit(1);

}

fpout = fopen(foutname, “w”);

if(fpout == NULL)

{

printf(“Can not open file %s\n”, foutname);

exit(1);

}

while((ch=fgetc(fpin)) != EOF)

{

fputc(ch, fpout);

}

fclose(fpin);

fclose(fpout);

}

Example: Following program appends one file to another using append mode. It is almost
equivalent to the file copy except that the output file is opened in append mode instead of
write mode.

#include <stdio.h>

#include <stdlib.h>

void main()

{

FILE *fpin, *fpout;

char *finname = “test.txt”;

char *foutname = “test-out.txt”;

int ch;

110

fpin = fopen(finname, “r”);

if(fpin == NULL)

{

printf(“Can not open file %s\n”, finname);

exit(1);

}

fpout = fopen(foutname, “a”);

if(fpout == NULL)

{

printf(“Can not open file %s\n”, foutname);

exit(1);

}

while((ch=fgetc(fpin)) != EOF)

{

fputc(ch, fpout);

}

fclose(fpin);

fclose(fpout);

}

Finding the Current Location

It is often useful to know where the current location is in a file. This is especially important in
case of random accessing of a file. The function ftell() returns the offset of the file pointer
from the start of the file as a long number.

long <offset variable> = ftell(<file pointer>);

Random Access

All the file operations in C are designed to read or write data sequentially starting from first
byte onwards, which is known as sequential access. The only variation is the append mode
which automatically goes to the end of the file so that any writing will append data to the end.
Sometimes it is useful to be able to read or write something from a given location of the
file.This ability to directly go to a specific location of a file is called random or direct access.
The function fseek() enables a program to go directly to a specific location of the file and the
file operations can be performed starting at that location. To do this, fseek() requires three
parameters: the filepointer, an offset, and a value telling it how to use the offset. The standard
syntax is :

fseek (filepointer, offset, how);

There are three constants defined in stdio.h as SEEK_START, SEEK_CUR, SEEK_END which
can be used with how. If how is defined as SEEK_START, the offset is measured from the start

111

of the file. If it is defined as SEEK_CUR, then the offset is measured from the current location
and if it is defined as SEEK_END, the offset is measured from the end of the file.

Example: Following program opens a file in read+write mode and shows the 6th character
from the file and then changes the first character (0th character) to X.

#include <stdio.h>

#include <stdlib.h>

void main()

{

FILE *fp;

char *fname = “test.txt”;

int ch;

fp = fopen(fname, “r+”); // read and write mode

if(fp == NULL)

{

printf(“Can not open file %s\n”, fname);

exit(1);

}

// Get 6th character in the file

fseek(fp, 6, SEEK_SET);

printf(“6th character in the file is: %c\n”, fgetc(fp));

// Change 1st character to X

fseek(fp, 0, SEEK_SET);

fputc(‘X’, fp);

fclose(fp);

}

Example: Following program reads numbers from a file and sorts them using the library function
qsort defined in stdlib.h. qsort() is the function that can be called with a pointer to the array of
data, the number of elements in that array, the size of each element and a comparison function.

#include <stdio.h>

#include <stdlib.h>

int compare (const void *val1, const void *val2);

void main()

112

{

FILE *fp;

int data[20];

char *fname = “data.txt”;

int val, count, i;

char line[80];

fp = fopen(fname, “r”);

if(fp == NULL)

{

printf(“Can not open file %s\n”, fname);

exit(1);

}

/* —— Data reading part —— */

count = 0;

for(i=0;i<20;i++)

{

if(feof(fp))

{

break; // If end of file, break from the loop

}

fgets(line, 80, fp);

if(strlen(line) == 0)

{

break; // If line is NULL, break from the loop

}

sscanf(line,”%d”, &val); // Read one integer from string

data[count] = val; // Add the integer to the data

count++; // and increment the count by one

}

fclose(fp);

/* — Print original data — */

printf(“Data before sort\n——————————\n”);

for(i=0;i<count;i++)

{

113

printf(“%d\n”, data[i]);

}

qsort(data,count,sizeof(int),compare); // Actual sort function call

/* — Print sorted data — */

printf(“Data after sort\n———————————\n”);

for(i=0;i<count;i++)

{

printf(“%d\n”, data[i]);

}

}

int compare (const void *val1, const void *val2)

{

int *p1 = (int *) val1;

int *p2 = (int *) val2;

 if (*p1 > *p2) return 1;

 if (*p1 < *p2) return -1;

 return 0;

}

The file is opened and each line is read using fgets function which takes three arguments, the
character array into which data is read, maximum length of array (including NULL at the end)
and the file pointer. Before reading a line it checks if EOF is encountered by using the function
feof(file pointer) function which returns zero if not EOF or non-zero (true) if EOF is reached.
From the string, a number is read using sscanf which acts like scanf except that it reads data
from a string instead of keyboard (stdin). The number is then copied into data array and the
counter is incremented.

The function “compare” uses pointers of type void *, which is defined by the library function.
So each pointer is to be casted as pointer of type int * before the values can be compared. The
compare function should return +1 if fist value is greater than second, -1 if second value is
greater than first, or zero if both are equal.

To run this program a file “data.txt” is to be created with any text editor and add some numbers,
one per line. The file should be in the same directory where the executable file is created.

Command Line Arguments

It is very common to pass arguments to a program when the program is invoked from the
command line. For example, the ls program in Unix or dir command in Windows can take
arguments as ls a* or dir a* where ls or dir is the command and a* is the argument. This is
supported in C by modifying the main function’s parameter list. Information about command
line arguments is passed by the operating system to the entry function of the invoked program
by way of parameters, which is the main() function.

114

To make use of the command line arguments which are passed to main(), it needs to be modified
accordingly. C supports arguments to main which is not explored so far. It takes two arguments.
The first one is a number that gives how many arguments there are and the second one is an
array of strings containing the actual arguments. Thesetwo arguments are traditionally given
the names argc and argv though they can be changed. To utilize the arguments, change the
main program as follows:

main (int argc, char *argv [])

Following program lists all the arguments passed from the command line:

#include <stdio.h>

int main (int argc, char *argv[])

{

int i;

printf (“Number of arguments: %d\n”, argc”);

for(i=0; i<argc; i++)

{

printf(“Argument %d: %s\n”, i, argv[i]);

}

}

In the above program, argc is the count of arguments passed, and argv is an array of pointers to
strings.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What is command line argument?

...

...

...

9.4 SUMMARY

In general, A file is a sequence of data stored on the permanent storage medium like hard
disk.A file must be opened before it is accessed and must be closed when nothing more need to
be done. When a file is opened, C provides a pointer to a special structure called FILE, which
holds information pertaining to the file like the name, size, current location etc. This pointer is
now the handle for the file, and all operations require this pointer as reference, including the
close operation. The reading and writing operations on file are done exactly the same way as
they are done with keyboard and screen except that the function names are fprintf, fscanf,
fputs, fgets, fgetc, fputc etc. All these functions take the pointer to FILE structure as an extra
parameter. Every file is appended with a special imaginary symbol known as “End of File”,
defined as an integer constant in stdio.h as EOF (generally represented with -1) to ensure that
the program will terminate up on encountering EOF. Every program should handle this EOF
character to see that the program avoids reading beyond the last character of the file.All the
file operations in C are designed to read or write data sequentially starting from first byte

115

onwards, which is known as sequential access. The only variation is the append mode which
automatically goes to the end of the file so that any writing will append data to the end.
Sometimes it is useful to be able to read or write something from a given location of the
file.This ability to directly go to a specific location of a file is called random or direct access.
The function fseek() enables a program to go directly to a specific location of the file and the
file operations can be performed starting at that location. To do this, fseek() requires three
parameters: the filepointer, an offset, and a value telling it how to use the offset.It is very
common to pass arguments to a program when the program is invoked from the command line.
For example, the ls program in Unix or dir command in Windows can take arguments as ls a*
or dir a* where ls or dir is the command and a* is the argument. This is supported in C by
modifying the main function’s parameter list. Information about command line arguments is
passed by the operating system to the entry function of the invoked program by way of
parameters, which is the main() function.

9.5 CHECK YOUR PROGRESS MODEL ANSWERS

1. Every file is appended with a special imaginary symbol known as “End of File”

2. Argument(s) passed to command prompt of operating system through C program

9.6 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Write a program to demonstrate creating, opening, reading the file

2. Explain concatenation of two files using a code example

3. Write a program to sort the content of a file?

II. Answer the following questions in about 15 lines each

1. Describe accessing a file randomly.

2. Explain how to copy contents of a file to another file with code example

3. Write a program to demonstrate command line arguments

9.7 GLOSSARY

File : A file is a sequence of data stored on the permanent storage medium
like hard disk.

EOF : Every file is appended with a special imaginary symbol known as
“End of File”

Bitfield : A number of bits in a word made accessible as a struct member.

bitset : A standard library “almost container” holding N bits and providing
logical operations on those.

116

117

 BLOCK - IV

 INTRODUCTION TO C++

This block gives an overall knowledge Object Oriented Programming with C++. Various
concepts of Object Oriented Programming Paradigms such as class, object, abstraction,
encapsulation, inheritance, polymorphism, and dynamic binding are described with examples.
Defining Class, instantiating objects of class, access specifiers such as public, private,
protected are explained with appropriate examples. Constructors, destructors, function
overloading, function overriding, pointers to objects, passing objects to functions are
described with crystal clear examples. Overloading of arithmetic operators, input and output
operators are explained with appropriate examples. Inheritance concepts such as base class,
derived class, multiple inheritances, and multi-level inheritance are explained
diagrammatically with suitable example. Virtual functions, virtual base class, templates
are described with crystal clear code examples.

The units included in the block are:

Unit-10: Classes and Objects

Unit-11: Inheritance

Unit-12: Polymorphism

118

119

UNIT- 10: CLASSES AND OBJECTS

Contents

10.0 Objectives

10.1 Introduction

10.2 OOPs and C++

10.3 C++ Classes, Objects, I/O Statements, Access Specifiers

10.4 Data Memebers, Member Functions, Constructor, Destructor

10.5 Function Over Loading, Garbage Collection

10.6 Summary

10.7 Check Your Progress – Model Answers

10.8 Model Examination Questions

10.9 Glossary

10.0 OBJECTIVES

After studying this unit, you should be able to

 understand various concepts of OOPs in C++

 explain how to create classes,objects, Access specifiers

 describe data memebers, member functions, constructor, destructor, I/O statements

 understaend function over loading, overriding, garbage management

10.1 INTRODUCTION

When computers were invented, programming was done by binary instructions, which was
feasible as long as the programs were just a few hundred instructions long. As the programs
grew in size, writing code in binary format became almost impossible and assembly language
was invented, which uses symbolic representation of machine instructions. This made programs
a little understandable. As programs continued to grow, high level languages were introduced
like FORTRAN and BASIC. These were impressive in the beginning and as the program
length increases, it becomes very difficult to understand the program. Then structured programs
like C and Pascal were introduced which modularized the programming by using functions
and multiple files. Moderately complex programs can be developed with these languages with
ease. Once the project grows beyond certain size, even this method also fails because of too
many functions, variables and structures. All along the journey of development of languages,
methods were created to allow the programmer to deal with increasingly greater complexity.
Every new language or approach took the best part of the previous languages and added new
methods to handle complexity of the program. Today many of the projects are near or at the
point where the structured approach no longer works. To solve this problem, objected oriented
programming was invented which modularizes the program where each module is almost self
contained and independent of other.

10.2 OOPs AND C++

It is the latest way and the most natural way of solving a problem. This example explains why

120

this concept is natural way and productive. A manager of an office asked his clerk to get a new
pen. As far as the manager is concerned, his object is to get a new pen. He doesn’t bother how
a pen can be purchased following the rules of that company. (May be an indent is placed,
Quotations are called, Lowest quotation is sent to the purchases manager for approval,
permission is granted after 2 or 3 queries, order is placed, reminders are sent to the supplier as
he could not supply in time, and so on. Finally the pen is purchased and given to the manager).
i.e., each work is done by the individual concerned, but for a common objective, getting a pen.
In the same way, in OOP, types of operations are classified and each class is responsible for its
data and related functions. Using OOP, a problem can be decomposed into subprograms of
related parts of the problem. Then using the actual language, each part can be translated into
self-contained units, called Objects. All the OOP languages have three things in common:
Objects, Polymorphism and Inheritance, which are the essences of human behavior.

Object and Data Encapsulation

An object is a logical entity that contains data and methods that manage that data. Some code
and/or data may be private to the object (inaccessible directly from outside the object), and
some data and/or code is public (accessible from anywhere in the program). This type of
linkage of code and data is known as data encapsulation. It is a good practice to provide
manipulation methods for the data so that data is not directly accessed by the user. For simplicity
an object may be viewed as a user defined type variable. Class is the definition of how an
object should be. It can be viewed as a blueprint or a design that is used to create objects. For
example, the blueprint of a car can be viewed as a class while the car itself made out of this
design is an object. An object of a given class type can be created either statically using a
variable, or dynamically using the ‘new’ keyword.

<className><varName(optional initialization data);

or

<varNamePtr> = new <className>(optional initialization data);

Where varName is a variable of a given className and varNamePtr is a pointer of type
className.

Polymorphism

All OOPs support polymorphism, which means that one name, can be used for several related
but slightly different purposes. Consider the operation of a stack. We need two functions push
() and pop () for stack operation. Depending on the data type (say integer, long, float, double
...) we should write separate functions, which should do the same thing on the given data.
Hence the same function names (PUSH and POP) are appropriate for all the data types. The
compiler will select the appropriate push or pop function depending on the data type passed as
input. For this reason all functions in C++ must be prototyped. Another example is adding two
numbers. A plus (+) symbol must work correctly for all data types like adding two strings, two
complex numbers and so on. The program should be developed in such a way that it takes the
right spirit of the expression, with the + symbol. This behavior is known as overloading. A
human being can automatically select appropriate method depending on the situation and
computer must be programmed to do so.

Inheritance

It is the process by which one class can acquire the properties of another class. Let an “Animal”
is defined as a being with 4 legs and a tail. Now a “Cow” can be defined as an “Animal” with
2 horns. A “Tiger” can be defined as an “Animal” with claws. Thus both Tiger and Cow are
animals and so they should have 4 legs and a tail apart from their distinct characters. By doing
this redefinition of animal is eliminated. Here the “Animal” is known as the base class and

121

“Cow” and “Tiger” are known to be derived from Animal. By analogy, it is equivalent to a
father and son, where all the assets of the father will be inherited by the son in addition to any
asset acquired by him exclusively.

Aggregation

In addition to the three concepts mentioned above (which apply to classes), there are also
aggregation relationships (which apply to objects). These apply when objects of one class are
created and used in objects of another class. Aggregation of this kind is more flexible than
inheritance because they can be more readily reorganized.

C++ Reserved Words

The Following are reserved and should not be used as function names or variable names. Most
of these are C reserved words as well.

asm else new This auto

enum operator throw bool explicit

private true break export protected

try case extern public typedef

catch false register typeid char

float reinterpret_cast typename class for

return union const friend short

unsigned const_cast goto signed using

continue if sizeof virtual default

inline static void delete int

static_cast volatile do long struct

wchar_t double mutable switch while

dynamic_cast namespace template

Function Prototyping

In C a function prototype is optional and half prototyping (parameter definition is omitted) is
sufficient. But in C++, full prototyping (parameters should also be defined) is essential and
compiler gives an error message if a function is not defined. Consider a function add, which
takes two integers as arguments and returns their sum.

int add(); //Half prototype

int add(int, int); // Full prototype

This is justified because C++ supports polymorphism. So each function declares its parameters
and their types well ahead. Otherwise the compiler can’t choose the correct function depending
on the types of parameters passed.

New data types in C++

C++ introduces a new data type ‘long double’, which takes 80 bits which can represent real
numbers of 3.4 x 10 –4932 to 3.4 x 10 4932, which is sufficient to represent practically anything.
C++ also gives a new data type called class, which is similar to structure in C. The C++ also
enhanced the structure to contain data as well as its related functions (in C, structure cannot
contain code). Another data type exclusive for C++ is the reference variable, which is an alias
of another variable.

122

Limitation of goto in C++

The goto statement is limited to a block (pair of parentheses) in C++. This is necessary because,
if it goes out of block, the object is no more valid, but its destructor (will be discussed later) is
not run. To avoid this, scope of goto is limited to a block.

Namespace in C++

C++ uses namespace to distinguish methods of same signature but belong to different regions
of a program or files.. Different namespace blocks can have identifiers of same name. All
declarations within those blocks are declared in the named scope. To declare a namespace
globally, a directive “using namespace” is used at the top of the program just below the #include
directives.

using namespace std;

The std is a standard namespace that is used generally and is seen in almost all the programs.
All modern compilers make the namespace mandatory. If a block is to be given a separate
namespace, it can be declared as

namespace nmsp1

{

<type><varname>;

…

}

Namespace nmsp2

{

<type><varname>;

…

}

To access a variable from a namespace, the scope resolution operator ‘::’ is used.

namespaceName::variableName

where namespaceName is the name of the namespace and variableName should be defined
within that namespace block.

// Creating namespaces

#include <iostream>

using namespace std;

namespace ns1

{

int x = 10;

int value()

{

return x;

}

123

}

namespace ns2

{

double x = 2.5;

double value()

{

return x*x;

}

}

int main()

{

// Access value function within ns1

printf(“Value from ns1: %d\n”,ns1::value());

// Access value function within ns2

printf(“Value from ns2: %f\n”,ns2::value());

// Access variable x directly

printf(“x from ns1 and ns2: %d, %f\n”,ns1::x, ns2::x);

return 0;

}

The output of the program will be:

Value from ns1: 10

Value from ns2: 6.250000

x from ns1 and ns2: 10, 2.500000

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is namespace?

...

...

...

10.3 C++ CLASSES, OBJECTS, I/O STATEMENTS, ACCESS
SPECIFIERS

Class and Structure

C++ supports both struct and class data types, which are almost similar. Both have data and
functions as members of that class or structure. The syntax for both is given below:

124

class <className> {

<optional scope specifier><data type><variableName>;

…

<member functions>

};

struct <structureName> {

<optional scope specifier><data type><variableName>;

…

<member functions>

};

Except for the class/struct keyword, there is no difference between these two definitions. In
fact, these can be used interchangeably in C++. The only difference between them is the
default scope, which is public by default in structures (accessed from anywhere) and private
by default in classes (accessed only from within the class). Consider the following example:

class Adder {

int a, b;

public:

void printData() {

printf(“a=%d, b=%d, a+b=%d\n”, a, b, a+b);

}

void setData(int x, int y) {

a = x;

b = y;

}

}

int main(int argc, char *argv[])

{

Adder adder = new Adder();

adder.setData(20, 30);

adder.printData();

adder.a = 10; // Gives an error because a is private by default.

adder.printData();

}

In the above example, a new class/structure is defined as having two variables a and b and two
functions that act up on the data. By default the variables are private, which means, they
cannot be accessed from outside the class if it declared as ‘class’. Hence, the last line gives an

125

error unless a is made public or class is changed to struct where all variables are public by
default.

C++ provides a new facility to write functions outside the class definitions but can be declared
as members of a class by using the scope resolve operator (::). The advantage is that the class
definition only contains the data and function declarations, and the actual code that manipulates
the data can be written outside the class for clarity. Following example demonstrates the same
class defined above, with the functions printData and setData declared inside the class and
defined outside the class with scope resolution operator. It is important to note that the function
declarations are necessary inside the class and can be implemented (defined) outside the class
with scope resolution operator.

class Adder {

int a, b;

public:

void printData(void);

void setData(int , int);

}

void Adder::printData(void); {

printf(“a=%d, b=%d, a+b=%d\n”, a, b, a+b);

}

void Adder::setData(int x, int y) {

a = x;

b = y;

}

int main(int argc, char *argv[])

{

… // same as above

}

Access Specifier

In C++, a variable can be declared to be a public variable, a private variable or a protected
variable, just by preceding its definition with the access specifier (public, private or protected)
followed by a colon. Following table gives the visibility of each specifier.

 Specifier Access

 public The variable is accessible from anywhere in the program.

 private The variable is accessible only from within the class it is defined or
its friend functions. It is not available even to its derived classes.

 protected The variable is available from within the class and its sub-classes
(derived classes).

126

Example:

public:

int x;

private:

float y;

protected:

char name[80];

Once a specifier is encountered, all the variable declared next will use the same specifier until
the compiler encounters another specifier. For example, the following code declares two public
variables (x and y) and one private variable (z):

public:

int x;

int y;

private:

float z;

Input and Output Using C++’s I/O Functions

C’s I/O system is unparalleled and any kind of format can be achieved using the library functions
(printf, scanf etc.). Though the power of C’s I/O is more than adequate, C++ has its own I/O
functions defined as streams. This is to facilitate the feature of extending the I/O to any device,
which may come in future. For example, text can be sent through MODEM, by extending the
output stream in C++. A second reason for such a special system is to develop new formats.
Consider printing complex numbers of the format x +iy. In C, this can be done with standard
format like

printf(“(%d +i%d)”,x.real, x.imag); where, x is a structure having 2 integer values as real and
imaginary parts of the complex number. There is no way that we can print the complex number
in one stroke, like

printf(“%complex”, x); where complex is a new format.

In C++ overloading the << operator can easily do this It is perfectly correct to write:

cout << x; where x is a complex number and ‘cout’ is the standard C++ output directive similar
to stdout in C. Similarly, we can write a function to get the input from the user like:

cin >> x;

The equivalent of this in C is:

scanf(“%d%d”,&x.real, &x.imag);

Here cin is the standard input function which is equivalent to stdin in C. It is possible to use
printf and scanf in C++ but using cout and cin functions is natural.

Example: Following is the first C++ program that shows the hello world message on the screen.

#include <iostream>

using namespace std;

void main()

127

{

cout << “\n”

<< “Hello World”

<< “\n”;

}

This prints the message ‘Hello World’ on the screen. Here the left shift operator ‘<<‘ (called
insertion operator) is overloaded as an operator to input data to the object cout, which outputs
this on to the screen. Similarly the right shift operator ‘>>’ (called extraction operator) is
overloaded as an operator to input data to the object cin which inputs the data to the variable.
Inclusion of the header file ‘iostream’ is necessary for accessing various definitions and hence
it is almost seen in every C++ program. All C++ header files are included without the .h
extension.

Example: Following example reads some data from the user and prints it on the screen.

#include <iostream>

using namespace std;

void main()

{

int x;

char string[20];

cout <<“\nEnter a value:”;

cin >> x;

cout << “\nEnter your name:”;

/*

First method: reads only up to the first white space

*/

cin >> string; //Ends at the first space.

/*

Second method: Reads full text up to 19 characters or new line whichever comes first

*/

//cin.get(string, 20, ‘\n’);

cout << “\nHellow”

<< string

<< “you have entered “

<< x

<<endl;

}

128

Here many extractors are cascaded which can also be done with a cout to each extractor.

cout << “this “ << “is “ <<“a string” << endl; is equivalent to

cout << “this “;cout <<“is “; cout <<“a string”;cout <<endl;

The ‘endl’ is a macro defined in iostream header file as newline character for that operating
system (\n for Unix, \n\r for Windows, \r for Mac etc.). The stream cin reads a string only up to
the first white space. If a string with white spaces is to be read, the member function ‘get(char
*, int, char) may be used which takes a pointer to the string into which data is to be copied,
number of characters to read (a NULL is appended at the end automatically) and the delimiter
to use. Hence, if the first method is commented and second method is uncommented, the
program works properly.

Formatted Input and Output

We can obtain formatted input and output in two methods.

i) Using ios member functions

ii) Using manipulator functions

Using ios member functins :

in iostream the following enumeration is declared.

enum {

 skipws = 0x0001,

 left = 0x0002,

 right = 0x004,

 internal = 0x0008,

 dec = 0x0010,

 oct = 0x0020,

 hex = 0x0040,

 showbase = 0x0080,

 showpoint = 0x0100,

 uppercase = 0x0200,

 showpos = 0x0400,

 scientific = 0x0800,

 fixed = 0x1000,

 unitbuf = 0x2000,

 stdio = 0x4000

 };

129

 skipws: When set, leading white-space characters are discarded when
performing input on a stream. If it is unset, these are not discarded.

 left, right: Sets the justification.

 internal: When set, a numeric value is padded to fill a field by inserting
spaces between any sign or base character.

 dec, oct, hex, By default, numeric values are output in the base as they are

 showbase, uppercase represented. However, we can override this default by setting
appropriate flag.

 showbase Causes the output to be prefixed with its base symbol (for example
80 hex is printed as 0x80. If upper case is set, the same value is
printed as 0X80).

 scientific, fixed By default, the system takes care of the notation of the floating
format. But at times we wish to print the value in a particular format.
To print a value in scientific notation, set scientific flag. To print in
standard floating point notation set fixed flag. For example a value
1234.5678 will be printed as 1.234e3 by default, with a floating-
point precision of 2 (since precision is less than the actual digits).
If fixed is set, the same is printed as 1234.57.

 unitbuf When set, the C++ I/O system performance is improved. By default
this is set.

 stdio When set, each stream is flushed after each output.

Table 10.1

General format of setting or unsetting is

stream.setf(long flags);

stream.unsetf(long flags);

if stream is standard I/O then

cout.setf(ios::<flagname>);

cout.unsetf(ios::<flagname>);

For example to set both showbase and uppercase it may be written as:

cout.setf(ios::showbase | ios::uppercase);

To set width of a field to n use width() function as:

cout.width(n);

To set precision with to 2, use precision() function as:

cout.precision(2); // sets 2 digits after decimal point

Using I/O Manipulator Functions:

This method uses special functions called manipulators, which can be included in an I/O
statement. These are defined in iomanipheader file. The general format is

130

stream << manipulator_ function;

The following table gives a list of various manipulator functions.

 Manipulator Purpose Input/Output

 dec Format numeric data in decimal I & O

 endl Output a new line char and flush the stream O

 ends Output a null O

 flush Flush a stream O

 hex Format numeric data in hex I & O

 oct Format numeric data in octal I & O

 resetiosflags(long f) Turn off flags specified in f I & O

 setbase(int base) Set the number base to base O

 setfill(int ch) Set the fill char to ch I & O

 setiosflags(long f) Turn on flags specified in f I & O

 setprecision(int p) Set No. of digits displayed after the decimal point I & O

 setw(int w) Set the field width to w I & O

 ws Skip white spaces I

Table 10.2

The following example gives a brief overview of how to use various functions.

#include <iostream>

#include <iomanip> // for manipulator functions

using namespace std;

int main()

{

int x=12345;

float y=1234.5678;

char *z = “This is a test string”;

/* Using Manipulator functions from iomanip.h */

cout << “using manipulator functions” << endl;

cout << “using width 3 justification = right :”;

cout << setw(3) << x <<endl; // ignores this because width is > 3

cout << “using width 15 justification= right :”;

cout << setw(15) << x <<endl; // sets the width to 15

cout << setiosflags(ios::left); // set left justification on

cout << “using width 15 justification = left :”;

131

cout << setw(15) << x <<endl;

cout << resetiosflags(ios::left); // Turn of left justification

cout << “default :” << y << endl

<< setw(8) << setprecision(2) << setiosflags(ios::fixed)

<< “Prec. 2 :” << y << endl // prints 2 digits after decimal piont

<< setprecision(5)

<< “Prec. 5 :” << y << endl

<< setiosflags(ios::scientific) // Prints in exponential notation

<< y << endl

<< setiosflags(ios::uppercase) // use E & X for Exp. and Hex

<< y << endl;

cout << setw(10) << z <<endl // overrides the width function

<< setw(40) << z <<endl // right justified

<< setiosflags(ios::left) <<z <<endl; // left justified

cout <<“Now using ios flags to get required format” << endl;

cout.setf(ios::hex|ios::showbase|ios::uppercase);

cout << x << endl;

cout.unsetf(ios::hex);

cout << x << endl

<< “End of Test Program\n”;

return 0;

}

Local Variables in C++

Traditionally all local variables must be declared at the start of a block in C which is not
mandatory in C++, where local variables can be declared anywhere in the program before it is
first used. For example the following is incorrect in C but is perfectly acceptable in C++.

 f() {

 int i;

 i=10;

 int j; // error in C

 }

In fact, it is convenient to declare the variables as close to the place where it is first encountered
as possible. This makes the life easy when debugging a program. This is also convenient to
encapsulate that function and the variables at a later date. It also helps us avoid accidental side
effects. Even variables are initialized dynamically, by equating it to an expression, say int
p=(strlen(x)+1)/blanks(x); Here, p is assigned a value which is the result of an expression.

132

Now if x is read from the keyboard at run time, p is initialized using the length and blanks in
the string.

Reference Variables and Passing Variables by Reference:

Reference variables are aliases to other data items. They are not allocated memory directly.
Instead, they point to other variables’ addresses, hence they cannot be just declared. They
must be initialized to another variable. Reference variables are declared with an ampersand
(&) before the variable. For example,

int x;

int &y = x;

This declares x as an integer, and y as a reference variable (alias to x), which is also sharing the
memory allocated to x. Hence, you can change the value of x by either x or by y.

If a variable is passed to a function by reference, then in the function where it is used, we need
not use the pointer notation. We simply use the variable as normal variable. The only difference
is during the declaration. Consider the following example, where the variables are sent by
address (pointer notation) and as reference variables. The result of both the callings is identical,
but the way the parameters are sent while calling and receiving is different.

#include <iostream.h>

int main (void)

{

int a=10, b=20;

int c=10, d=20;

swap_ptr(&a, &b);

swap_ref(c,d);

cout << “a = “ << a << “ b = “ << b << “\n”;

cout << “c = “ << c << “ d = “ << d << “\n”;

}

swap_ptr(int *x, int *y)

{

int t;

t = *x;

*x = *y;

*y = t;

}

swap_ref(int &x, int &y)

{

int t;

t = x;

x = y;

y = t;

}

133

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What is access specifier?

...

...

...

10.4 DATA MEMEBERS, MEMBER FUNCTIONS,
CONSTRUCTOR, DESTRUCTOR

Initializing Variables of a Class

Variables of a class can be initialized using the ‘:’ operator between the closing bracket of the
parameters list and the block beginning ({). In the following code, variables a and b, are
assigned values, i.e., no value is assigned during creation of variables.

class Test

 {

 int a,b;

 public:

 Test(int x, int y) { a= x; b=y;} // assignment (not initialization)

 };

Here is the way to initialize the variables during their creation:

class Test

{

int a,b;

public:

Test(int x, int y) : a(x), b(y) { } // Initialization of a and b

....

};

Here a and b are private and test is a public function (method) that initializes a and b while
they are created.

Constructor and Destructor

A constructor is a special member function of a class which is automatically called just after
the object is created which can be used for initialization of objects of a class. A Constructor is
a special functions which has the same name as that of the class. It doesn’t declare any return
type. If a constructor is not defined, the compiler generates a default constructor with empty
body and with no parameters. Destructor is also a special function that is automatically just
before an object is destroyed or deleted from memory. It also has the same name as that of the
class except that it is preceded by a ‘~’ (tilde character). Hence, if a class name is A, then the
constructor’s name is A() and destructor’s name is ~A().

134

There are three types of constructors namely Default, Parameterized and Copy constructors.

Default Constructors

Default constructor is a constructor with no parameters. If the default constructor is not defined
by the user, it will be automatically created by the compiler with empty body.

Parameterized Constructors

Constructor can be overloaded using unique parameters list for each constructor. The parameters
passed to the constructor are used to initialize the object when it is created.

Copy Constructor: A copy constructor is a constructor that takes a reference to an object of
same type as parameter and initializes the current object.

See the following example below which illustrates all the three types of constructors and the
destructor:

#include <iostream>

#include <string.h>

using namespace std;

class Person {

char name[80];

int age;

public:

Person()

{

cout << “Default constructor called.\n”;

strcpy(name,”XXXXX”);

age = 999;

}

Person (const char * nm, int a)

{

cout << “Two arguments constructor called with “ << nm

<< “, “ << a <<endl;

strcpy(name, nm);

age=a;

}

Person(const Person &p)

{

cout << “Copy Constructor called with “ << p.name << “, “

<< p.age << endl;

strcpy(name, p.name);

age = p.age;

135

}

~Person()

{

cout << “Destructor called for “ << name << endl;

strcpy(name,””);

age = 0;

}

void print()

{

cout << “Name: “ << name << “ Age: “ << age << endl;

}

};

int main()

{

cout<< “Creating p with default values...” << endl;

Person p;

p.print();

cout << “Creating q with arguments ...” << endl;

Person q(“ABCDE”, 30);

q.print();

cout << “Creating Pointer object ...” << endl;

Person *ptr;

ptr = new Person(“GHIJK”, 25);

ptr->print();

cout << “Assigning q to a new variable r “<< endl;

Person r = q;

r.print();

delete ptr;

return 0;

}

In the above program the assignment r = q during declaration calls the copy constructor. Further,
the constructor is overloaded using different parameters.

Passing Objects as parameters

An object may be passed to a function just in same way as any other data type. When an object
is passed to the function, a copy of it only is sent. Hence, any change to the data in the function
doesn’t affect the data of the object. If the function needs to change the data really, a pointer to
the object or a reference to the object must be sent and the function needs to be modified

136

accordingly.

#include <iostream>

using namespace std;

class test {

 int i;

 public:

 void set(int x) { i=x;}

 void out() {cout << i << “ “;}

 };

void f1(test x)

{

x.set(100);

cout << “\nValue inside the function f1 is : “;

x.out();

}

void f2(test *x)

{

x->set(100);

cout << “\nValue inside the function f2 is : “;

x->out();

}

void main()

{

test x;

x.set(10);

cout << “\nvalue at the starting is :” ;

x.out();

f1(x);

cout << “\nValue after sending to f1 (call by value) is : “;

x.out();

f2(&x);

cout << “\nValue after sending to f2 (call by reference) is : “;

x.out();

}

The output is:

value at the starting is :10

137

Value inside the function f1 is : 100

Value after sending to f1 (call by value) is : 10

Value inside the function f2 is : 100

Value after sending to f2 (call by reference) is : 100

Observe that the call to f1 doesn’t change the value but a call to f2 will change the value since
the address is sent.

Arrays of objects

An array of objects can be created just like an array of any other data type. For example:

#include <iostream.h>

using namespace std;

class count {

 int x;

 public:

 void show() { cout << “\nThe Number is : “ << x; }

 void set(int i) { x=i;}

 };

void main()

{

count c[10];

for(int i=0;i<10;i++) c[i].set(i);

for(i=0;i<10;i++) c[i].show();

}

Pointers to Objects

The data or functions of an object can be accessed through pointers, just as in case of members
of a structure through pointer to a structure. Following example illustrates theuse of pointers
to objects:

#include <iostream.h>

using namespace std;

class Ptrobj

{

int n;

public:

void set_num(int x) { n= x;}

void show_num();

};

void Ptrobj :: show_num() {cout << n << “\n”; }

138

void main()

{

Ptrobj obj, *ptr; // an object and a pointer are created

obj.set_num(10);

obj.show_num();

ptr = &obj; // Pointer is assigned the address of obj

ptr->set_num(100);

ptr->show_num();

}

Dynamic Creation of Objects

An object may be allocated memory dynamically using the operator ‘new’ and the memory
can be released by using the operator ‘delete’. These functions eliminate the use of malloc()
and free() functions, though they can be used in C++ also. The main advantages of using new
instead of malloc() are

Size of the variable/ object is automatically calculated.

initializing an object is possible.

Automatic type casting

The new allocates memory from the heap and if memory is not available, it returns NULL, just
like its counterpart‘malloc’.Delete operator frees the memory previously allocated. Note that
it is highly dangerous to try to delete an object that doesn’t exist. This may lead to unpredictable
behavior including a system crash. The syntax is:

Allocating memory without initializing

<ptr variable> = new <variable type>;

delete <ptr variable>;

Allocating memory with initializing

<ptr variable> = new <variable type>(parameters);

Allocating an array of variables

<ptr variable> = new <variable type> [<size>];

delete [<size>] <variable type>;

Note that when array is allocated memory with new, it can’t be initialized. In some modern
C++ compilers size need not be specified in delete statement.

#include <iostream.h>

using namespace std;

void main()

{

int *i;

139

float *p;

p = new float [10]; // allocating 10 float values

i = new int (15); // allocating integer and initialize to 15;

if(!p || !i) { cout <<“\nError in allocating memory”; return;}

for(int j=0; j<10;j++) p[i]=100.0+j;

cout << “\n” << *i << “\n”;

for(j=0;j<10;j++) cout << p[i] <<“\n”;

delete i;

delete [10] p;

}

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

3. What is parameterized constructor?

...

...

...

10.5 FUNCTION OVERLOADING, GARBAGE COLLECTION

Default Function Arguments

C++ allows a function to assign a default value to a parameter when no argument corresponding
to that parameter is specified in a call to that function. For example consider the function f
below:

void f(int i=1) { }

can be called with one or no arguments as

f(10); // Pass an explicit value of 10

 f(); // Let the function use its default value i.e., 1

Example :

#include <iostream>

using namespace std;

void print_size(int x =0, int y =0, int h=0, int w=0)

{

cout << “Window starts at row , col: “ << x <<“, “ << y << “ “;

cout << “With height, width: “ << h << “, “ << w << endl;

}

int main()

140

{

print_size(); // 0 arguments (x=y=h=w=0)

print_size(1); // 1 argument (x=1, y=h=w=0)

print_size(1,2); // 2 arguments (x=1, y=2, h=w=0)

print_size(1,2,10); // 3 arguments (x=1, y=2, h=10, w=0)

print_size(1,2,10,5); // 4 arguments (x=1, y=2, h=10, w=5)

return 0;

}

The output will be

Window starts at row, col: 0, 0 With height, width: 0, 0

Window starts at row, col: 1, 0 With height, width: 0, 0

Window starts at row, col: 1, 2 With height, width: 0, 0

Window starts at row, col: 1, 2 With height, width: 10, 0

Window starts at row, col: 1, 2 With height, width: 10, 5

In general, any number of arguments can be set to defaulted values, and the only rule is that
they must all be declared after the parameters without default. The following function declaration
is incorrect.

 func(int i, int j=0, int k, int l=0) //j had default but declared before k.

It should be declared as:

 func(int i, int k, int j=0, int l=0)

Function Overloading

C++ supports function overloading where the same function name can be used for two functions
provided their parameters are different. C++ can select appropriate function when called,
depending on the parameters it receives during the call. The only rule is that there should be no
ambiguity in the parameter types. Any function can be overloaded in C++ except the main
method, which should be unique.

#include <iostream>

#include <string.h>

#include <malloc.h>

using namespace std;

int add(int a, int b)

{

return a+b;

}

float add(float a, float b)

{

return a+b;

141

}

char* add(const char *a, const char *b)

{

int l = strlen(a)+strlen(b)+1;

char *s = (char *) malloc(l);

strcpy(s,a);

strcat(s,b);

return s;

}

int main()

{

char *s = add(“abc”, “def”); // calls the char * version of add

cout<< add(10, 20)<<endl;

cout<< add(1.2f, 2.3f)<<endl;

cout <<s<<endl;

free(s);

}

The output of the function will be as expected:

30

3.5

abcdef

The string version of add allocates memory dynamically using malloc function.

Garbage collection

Garbage collection is a form of automatic memory management. The garbage collector or
collector attempts to reclaim garbage, or memory used by objects that will never be accessed
or mutated again by the application. C++ doesn’t provide garbage collection directly. Hence,
every object that the user creates must be cleared off when it is not necessary anymore. This
can be done with new and delete keywords which will allocate and release memory allocated
to an object. For example, consider the following program in C++:

#include<iostream.h>

classA{

intx;

public:

A(){x=0;}

};

intmain(){

142

A*a=newA();

Deletea;

}

In the above program, a new object of type A is created and its address is assigned to a. If
delete is not used, the variable’s assigned memory will not be cleared and will be hanging
around as long as the program is running. This is called memory leakage. Hence, every object
created dynamically should be deleted by the user so that there is no memory leakage during
the run of the program.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

4. What is garbage collection?

...

...

...

...

10.6 SUMMARY

It is the latest way and the most natural way of solving a problem. This example explains why
this concept is natural way and productive. A manager of an office asked his clerk to get a new
pen. As far as the manager is concerned, his object is to get a new pen. He doesn’t bother how
a pen can be purchased following the rules of that company. (May be an indent is placed,
Quotations are called, Lowest quotation is sent to the purchases manager for approval,
permission is granted after 2 or 3 queries, order is placed, reminders are sent to the supplier as
he could not supply in time, and so on. Finally the pen is purchased and given to the manager).
i.e., each work is done by the individual concerned, but for a common objective, getting a pen.
In the same way, in OOP, types of operations are classified and each class is responsible for its
data and related functions. Using OOP, a problem can be decomposed into subprograms of
related parts of the problem. Then using the actual language, each part can be translated into
self-contained units, called Objects. All the OOP languages have three things in common:
Objects, Polymorphism and Inheritance, which are the essences of human behavior.

A constructor is a special member function of a class which is automatically called just after
the object is created which can be used for initialization of objects of a class. A Constructor is
a special functions which has the same name as that of the class. It doesn’t declare any return
type. If a constructor is not defined, the compiler generates a default constructor with empty
body and with no parameters. Destructor is also a special function that is automatically just
before an object is destroyed or deleted from memory. It also has the same name as that of the
class except that it is preceded by a ‘~’ (tilde character). Hence, if a class name is A, then the
constructor’s name is A() and destructor’s name is ~A().Garbage collection is a form of automatic
memory management. The garbage collector or collector attempts to reclaim garbage, or memory
used by objects that will never be accessed or mutated again by the application. C++ doesn’t
provide garbage collection directly. Hence, every object that the user creates must be cleared
off when it is not necessary anymore. This can be done with new and delete keywords which
will allocate and release memory allocated to an object.

143

10.7 CHECK YOUR PROGRESS MODEL ANSWERS

1. A namespace declares a region that provides a scope to the identifiers (names of the
types, function, variables etc) inside it

2. It tells the way of accessing the members of class

3. Overloaded using unique parameters list for each constructor.

4. Garbage collection is a form of automatic memory management

10.8 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Write a program to create class and objects with data and functions

2. Explain different types of constructors and destructor with code examples

3. Write a program to pass objects as parameters?

II. Answer the following questions in about 15 lines each

1. Describe the concepts of abstraction, encapsulation, and polymorphism.

2. Explain how to create array of objects with a programming examples

3. Write a program to demonstrate garbage collection

10.9 GLOSSARY

Class : An instantiabe entity which encapsulates state and behaviour.

Object : Instance of a class with unique id

Encapsulation : Wrapping different things into one entity.

Construcotr : A member function with the class name to initialize the data of
objects

Destructor : A member function with the class name to destruct the objects

144

UNIT- 11: INHERITANCE

Contents

11.0 Objectives

11.1 Introduction

11.2 Inheritance

11.3 Static Data Members, Static Methods, This Operator, Friend Classes

11.4 Summary

11.5 Check your progress – Model Answers

11.6 Model Examination Questions

11.7 Glossary

11.0 OBJECTIVES

After studying this unit, you should be able to

 explainhow to define base class and derived class in C++

 describe multiple and multi level inheritance in C++

 understand friend classes and friend functions

 describe static methods and static data members

11.1 INTRODUCTION

Inheritance is one of the important features of object oriented programming, through which
the capabilities of a class can be extended by deriving a new class from an existing class. By
doing so, the new class inherits all the public and protected properties of the existing class and
the user can add more data and methods to extend the capabilities of a class. The class from
which the new class is extended is known as the base class and the new class is called derived
class. A new class can be derived from more than one base class in C++, though it is discouraged
due to its associated problems. However it is a powerful feature, through which code can be
aggressively reused. The general syntax for multiple inheritance is:<newClass> :
<access><baseClass1> ,<access><baseClass2> …{ … };Where newClass is derived from
more than one class (baseClass1, baseClass2, …) with the given access (public or protected or
private). If access is omitted for any base class in the list, it is taken as private base class for the
new class. Static Variables are guaranteed a zero if not initialized to other values. Also an
object need not be instantiated to use the static functions. This feature is used to generate
wrapper classes. Wrapper classes are useful in pure object oriented languages, where one
cannot write general purpose functions (say sin(x)) outside of the classes. An object need not
be created to call static methods or static members since they belong to the class but not to the
object. Hence className.methodName() should be sufficient to invoke a method

11.2 INHERITANCE

Inheritance is one of the important features of object oriented programming, through which
the capabilities of a class can be extended by deriving a new class from an existing class. By
doing so, the new class inherits all the public and protected properties of the existing class and
the user can add more data and methods to extend the capabilities of a class. The class from

145

which the new class is extended is known as the base class and the new class is called derived
class.

class A {

 int x,y;

 public:

 };

To create another class B, which contains all the properties of class A, then B is declared as
below:

class B: public A {

 int z;

 public:

 };

Diagrammatically it is represented as

 A

B

Here class B gets all the properties (or inherits all the properties) of A and class B is said to be
derived from class A. Class A is called base class and class B is called derived class. Though
A is base class of B, the private parts of A are not accessible by B. For example, if any function
of B tries to access x or y, compiler will issue an error message. To make x and y of A accessible
to B, they must be declared as protected so that they are not accessible to others except the
derived classes. Following table gives an idea of the security level in OOP.

Accessible from
Access Type same class derived class friend function Others

private yes no yes no

protected yes yes yes no

public yes yes yes yes

Table 11.1

146

In the previous definition of B, nothing is mentioned about the type of A, hence it is taken as
a private part of B. Now consider that a new class C is derived from B.

class C : B {

 };

From C any function or variable that belongs to A cannot be accessed. To overcome this
problem, any base class must be made public, if this new class is going to form a Base for
another class in future. The following is the correct way to declare derived classes.

class A {

 protected int x,y;

 public :

 };

class B : public A {

 protected int z;

 public:

 };

The general form to define a derived class is

class <class name> : <access type><base>, <base>,.... {

 private data

 public:

 public data

 } <list of variables>;

As a practical example for inheritance, consider a shape with the following definition:

class Shape {

protected:

float x;

public:

Shape() { x = 0;}

Shape(float v) { x = v;}

void set(float v) { x = v}

float getX(void) { return x;}

float area(void) { return 0;}

void printArea() { cout << “ Area of the shape: “ << area() << endl;

}

147

Here, the class has one variable x, which can be set with constructor, or through its member
function set(). Now consider that an application needs a method area() which computes the
area of a given shape. For this the method needs to be inserted into the class. If the source code
is available it can be edited and new code can be inserted as required. Further, the code now
need to be tested from the beginning since, during editing, some errors might have crept in. If
it is not available, the only way to extend the class is through inheritance by which the Shape
can be extended. Consider a Rectangle which extends Shape (Rectangle is derived from Shape)

class Rectangle : public Shape

{

float y;

public:

float area() { return x*y;}

};

Now an object of type Rectangle can make use of both set() and area() methods to set dimensions
and compute the area. There are some issues with inheritance like, how to call the base class
constructor with arguments, what happens when the base class and the inherited class have the
same function, etc.

Calling Base Class Constructor

In the Rectangle class there is no constructor and hence, the default constructor is automatically
created and nothing will be done, except that it calls the default constructor of base class
(Shape()). To enable initialization, a constructor can be defined in Rectangle that just calls the
Shape’s constructor with the parameters. This done with

Rectangle(float v1, float v2) : Shape(v1, v2) {}

Here constructor automatically takes the same access level as its base class constructor by
default which is public in this case, since Shape’s constructor is declared as public.

class Rectangle : public Shape

{

Rectangle(float v1, float v2) : Shape(v1) {

y = v2; // v1 is passed to base class constructor

}

public:

float area() { return x*y;}

};

Now consider another shape Circle, which requires only radius.

class Circle : public Shape

{

const float pi = 3.1415;

Circle(float v) : Shape(v) {}

public:

148

float area() { return pi*x*x;};

};

In both cases, a function area is required with no arguments. While extending a class users
may use different names for area like computeArea(), shapeArea(), area() and so on, which are
all meaningful. Further, the base class has the function printArea which uses area() method
only. This is where the base class should mandate all its derived classes to implement the
area() function with exact signature, so that it can be used to get the area of the shape properly.
The area() function in base class is meaningless and it is there only to make the compiler to
properly compile the program. It is at this point, that the base class may just declare a function
with a special keyword “virtual” and assigned a value 0 to it. This virtual function is known as
pure virtual function, and should be implemented by the derived class.

Abstract Base Class

An abstract base class is a class where not all methods are implemented i.e., it has at least one
pure virtual function. Since there is missing code for the pure virtual function, an object of this
type cannot be created. A new class must be derived from this abstract base class to create
objects of this type where the missing virtual functions should be defined. Here is the new
version of the shape class that makes it abstract and all the derived classes implement the area
function.

Now both Rectangle and Circle classes should implement area() function and Shape can use
the appropriate area() function defined in the respective classes. Now consider the following
full program:

#include <iostream>

using namespace std;

class Shape {

protected:

float x;

public:

Shape() { x = 0;}

Shape(float v) { x = v;}

void set(float v) { x = v;}

float getX(void) { return x;}

void printArea() { cout << “ Area of the shape: “ << area() << endl;}

virtual float area(void) = 0; // Pure virtual function

};

class Rectangle : public Shape

{

float y;

public:

Rectangle(float v1, float v2) : Shape(v1) {y = v2;} // v1 is passed to base class constructor

float area(void) { return x*y;}

};

149

class Circle : public Shape

{

static const float pi = 3.1415;

public:

Circle(float v) : Shape(v) {}

float area(void) { return pi*x*x;};

};

int main(void)

{

Rectangle r(10,20);

Circle c(10);

r.printArea();

c.printArea();

}

The area of r and c are printed properly by using appropriate area function defined in their
respective class definitions.

Multiple Inheritances

A new class can be derived from more than one base class in C++, though it is discouraged due
to its associated problems. However it is a powerful feature, through which code can be
aggressively reused. The general syntax for multiple inheritance is:

<newClass> : <access><baseClass1> ,<access><baseClass2> …{ … };

Where newClass is derived from more than one class (baseClass1, baseClass2, …) with the
given access (public or protected or private). If access is omitted for any base class in the list,
it is taken as private base class for the newClass.

 A B

C

Figure 11.1

The above diagram implies that there are two classes A and B, from which a third class C is
derived. If there is a function f() in both A and B and not implemented by C and a call to this
function from C is ambiguous since, it can access both A,f() and B.f(). To further complicate
the things, consider the following example.

150

B C

D

A

Figure 11.2

Here, B and C are derived from A and D is derived from B and C. If a variable is available in
A which needs to be initialized during the creation of D, which path to choose is ambiguous.
via B and via C. Similarly the ambiguity during selecting a function remains same. Similarly
the base class constructor is called twice if a variable of type D is declared (one via B and the
other via C).

See the below example...

#include <iostream>

using namespace std;

class A {

public:

int x;

public:

A() { x = 0; cout << “A Default Constructor called “<<endl;}

A(int v) { x = v; cout << “A 1 Arg Constructor called with “<< v << endl;}

void print() { cout << “x from A: “ << x << endl;}

~A(){cout << “A Destrutor called “ << endl;}

};

class B : public A

{

int x;

public:

B():A(3){x = 10; cout << “B Default Constructor called..” << endl;}

B(int v) : A(50) {x = v; cout << “B 1 Arg Constructor called with “ << v << endl;}

void print() { cout << “x from B: “ << x << endl;}

~B(){cout << “B Destrutor called “ << endl;}

};

151

class C : public A

{

int x;

public:

C():A(5){x = 20; cout << “C Default Constructor called..” << endl;}

C(int v) : A(60) {x = v; cout << “C 1 Arg Constructor called with “ << v << endl;}

void print() { cout << “x from C: “ << x << endl;}

~C(){cout << “C Destrutor called “ << endl;}

};

class D : public B, public C

{

//int x;

public:

D():B(15), C(25){cout << “D Default Constructor called..” << endl;}

D(int v) : B(v-5), C(v+100) {cout << “D 1 Arg Constructor called..” << endl;}

~D(){cout << “D Destrutor called “ << endl;}

};

int main(void)

{

D d;

d.B::print();

d.C::print();

// d.A::print(); // Ambiguous base class for D hence error

* p = &d;

p->print();

}

The output of the program is :

A 1 Arg Constructor called with 50

B 1 Arg Constructor called with 15

A 1 Arg Constructor called with 60

C 1 Arg Constructor called with 25

D Default Constructor called..

x from B: 15

x from C: 25

152

x from B: 15

D Destrutor called

C Destrutor called

A Destrutor called

B Destrutor called

A Destrutor called

By careful observation, following points can be noted

 The constructors are recursively called until the final base class constructor is
encountered.

 Constructors are called in the order of definition of the derived class (B’s constructor is
called before C’s constructor) or left to right order.

 Destructors are called in the reverse order of the constructor calls.

 Each base class is specified with its own access

 When there is an ambiguity, it is resolved with scope operator ::

 When there is further ambiguity, compiler gives an error as in (d.A::print();) since A has
two paths to reach.

 A base class pointer can be assigned address of a derived class.

Multi Level Inheritance

C++ supports hierarchical inherence where the inheritance is a sequential chain of multiple
base classes but is different from multiple inheritance as shown below:

B

C

A

Figure 11.3

Here, C is derived from B, which is derived from A. This eliminates the ambiguities associated
with multiple inheritance structure. This is much widely used in many object oriented
programming language other than C++. If a function exists in All the 3 classes, still accessing
a variable is not an issue using a base class of that type or using scope operator.

The Implicit this Pointer (Keyword):

All objects have an implicit pointer available to every member function of the class. This
pointer is given a name “this” which points to the object itself and is available to all member
functions including constructors and destructor. Consider the class,

#include <iostream>

using namespace std;

153

class A {

int x;

public:

A(int x) { this->x = x;}

void print() { cout << “x = : “ << x << endl;}

};

int main(void){

A a(10);

a.print();

}

Without this->, x = x is meaningless since it will always refers to the local variable, which is
different from object variable x. The this pointer is useful wherever there is an ambiguity with
local variables, or to refer to the current object.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is inheritance?

...

...

...

11.3 STATIC DATA MEMBERS, STATIC METHODS, THIS
OPERATOR, FRIEND CLASSES

Static Members and Static Functions

Static members are the members of the class itself and not the members of the objects. It
means that all the objects of that type share these variables. Any member function can access
the value. If any object changes the value, all the others will represent the new value. Static
functions are the functions, which can access only static data. They are not passed this pointer
and hence, cannot access any other functions or data of the class. The static data items must be
declared in the program explicitly, with the scope resolution, as

<data type><class name> :: <data member> [= <initial value>] ;

Static Variables are guaranteed a zero if not initialized to other values. Also an object need not
be instantiated to use the static functions. This feature is used to generate wrapper classes.
Wrapper classes are useful in pure object oriented languages, where one cannot write general
purpose functions (say sin(x)) outside of the classes. An object need not be created to call
static methods or static members since they belong to the class but not to the object. Hence
className.methodName() should be sufficient to invoke a method. See the example below,
which counts the objects that are created during the run of the program.

#include <iostream.h>

class test {

154

 private:

 static int count;

 int value;

 public:

 test(int a=0) { value = a; count++;}

 setCount(int a) { count = a;}

 setValue(int a) { value = a;}

 show(){cout << “Count = “ << count << “ Value = “ << value << ‘\n’;}

 ~test(){count—; cout <<“Destructor run.. Now the count = “<< count<<“\n”;}

 };

int test::value; // value can be initialized by assigning a value here

main()

{

test a(5),b(10),c(15);

a.show(); b.show();c.show();

test d;

a.show();

a.setCount(10);

d.show();

{

test a(100),b(50);

a.show();b.show();

}

}

The output of the program is:

Count = 3 Value = 5

Count = 3 Value = 10

Count = 3 Value = 15

Count = 4 Value = 5

Count = 10 Value = 0

Count = 12 Value = 100

Count = 12 Value = 50

Destructor run.. Now the count = 11

Destructor run.. Now the count = 10

Destructor run.. Now the count = 9

Destructor run.. Now the count = 8

155

Destructor run.. Now the count = 7

Destructor run.. Now the count = 6

Note that the static count reflects the current count always whatever object calls the show
method. Following example illustrates the use of wrapper classes.

#include <iosteam.h>

class wrapper

{

public:

static double PI;

static int MAX_SHORT;

double sin(double x)

{

 double a;

 a = 1 – (x*x*x)/(1*2*3) + (x*x*x*x*x)/(1*2*3*4*5); // 1 – x3/3! + x5/5! ...

return a;

}

};

int wrapper::MAX_SHORT = 32767;

double wrapper::PI = 3.14159;

main()

{

double x= 60.0; // degrees

int a;

a = wrapper.MAX_SHORT;

x = wrapper.sin(x*wrapper.PI/180.0);

cout << “x = “ << x << “ a = “ << a << “\n”;

}

Friend Classes and Functions

A class cannot access the private members of another class. Similarly a class cannot access
protected members of another class unless it is inherited from that class. One exception in
C++ is that a friend class or function can access any member of the any other class that declares
this class or function as a friend. This is necessary if a class members are to be accessed
legitimately by another class, as in case of a print class which prints the data.

Friend Class

A friend class is a class that can access the private and protected members of a class in which
it is declared as friend. This is needed when we want to allow a particular class to access the
private and protected members of a class.

156

Example:

In this example there are two classes A and B. The A class has two private data members x and
y, this class declares B as friend class. This means that B can access the private members of A.
Thisis demonstrated with function disp() of B which prints private members x and y of A.

#include <iostream>

using namespace std;

class A {

private:

 char x=’A’;

 int y = 10;

public:

 friend class B;

};

class B {

public:

 void disp(A obj){

 cout<<obj.x<< “, “ <<obj.y<<endl;

 }

};

int main() {

 B obj;

 A obj2;

 obj.disp(obj2);

 return 0;

}

The output is as expected:

A, 10

Friend Function

Similar to friend class, this function can access the private and protected members of another
class. A global function can also be declared as friend as shown in the example below:

#include <iostream>

using namespace std;

class A {

private:

 char x=’A’;

 int y=10;

public:

157

 friend void disp(A obj);

};

//Global Function

void disp(A obj){

 cout<<obj.x<< “, “ <<obj.y<<endl;

}

int main() {

 A obj;

 disp(obj);

 return 0;

}

Here the global function disp() is made friend to class A and hence, the private members of the
object passed to it can be directly accessed from within the function. This feature is used in
operator overloading of << and >> which are explained later in this text when polymorphism
and overloading are explained.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What are static members?

...

...

...

11.4 SUMMARY

Inheritance is one of the important features of object oriented programming, through which
the capabilities of a class can be extended by deriving a new class from an existing class. By
doing so, the new class inherits all the public and protected properties of the existing class and
the user can add more data and methods to extend the capabilities of a class. The class from
which the new class is extended is known as the base class and the new class is called derived
class. An abstract base class is a class where not all methods are implemented i.e., it has at
least one pure virtual function. Since there is missing code for the pure virtual function, an
object of this type cannot be created. A new class must be derived from this abstract base class
to create objects of this type where the missing virtual functions should be defined. Here is the
new version of the shape class that makes it abstract and all the derived classes implement the
area function. C++ supports hierarchical inherence where the inheritance is a sequential chain
of multiple base classes but is different from multiple inheritance. Static Variables are guaranteed
a zero if not initialized to other values. Also an object need not be instantiated to use the static
functions. This feature is used to generate wrapper classes. Wrapper classes are useful in pure
object oriented languages, where one cannot write general purpose functions (say sin(x)) outside
of the classes. An object need not be created to call static methods or static members since they
belong to the class but not to the object. Hence className.methodName() should be sufficient
to invoke a method.A class cannot access the private members of another class. Similarly a
class cannot access protected members of another class unless it is inherited from that class.

158

One exception in C++ is that a friend class or function can access any member of the any other
class that declares this class or function as a friend. This is necessary if a class members are to
be accessed legitimately by another class, as in case of a print class which prints the data.

11.5 CHECK YOUR PROGRESS MODEL ANSWERS

1. Is process of extending the features of existing class by creating a new class

2. Static members are the members of the class itself and not the members of the objects

11.6 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Expalin inheritance wih code examples

2. Describe friend classes and friend functions with code examples

3. Write a program to demonstrate multiple inheritance?

II. Answer the following questions in about 15 lines each

1. Describe abstract base class.

2. Explain static methods and static data mebers with examples

3. Desribe conflict resolution in multiple inheritance

11.7 GLOSSARY

Base Class : Class from which a new class is derives using inheritance

Derived Class : Class which is extended from base class using inheritance

Abstract class : Class whose member functions are not implemnted

Static data member : Data member of a class which is sharaed by all the objects of
a class.

Friend functios : Function which can access the private and protected members
of another class

159

UNIT- 12: POLYMORPHISM
Contents

12.0 Objectives

12.1 Introduction

12.2 Virtual Functions

12.3 Operator Overloading

12.4 Templates

12.5 Summary

12.6 Check your progress – Model Answers

12.7 Model Examination Questions

12.8 Glossary

12.0 OBJECTIVES

After studying this unit, you should be able to

 describe polymorphism in C++

 explainhow to implement virtual functions in C++

 describe operator overloading

 understand templates

12.1 INTRODUCTION

The definition for polymorphism is “having many forms”. Typically, polymorphism occurs
when there is a hierarchy of classes which are related by inheritance and the methods have the
same signature. Since a base class pointer can point to a derived class object, a call to a
member function using a base class pointer should select the proper derived class method
instead of base class method. This selection is achieved in C++ with the support of
polymorphism.Consider the case of diamond inheritance where class A is the base class of
classes B and C and D is derived from class B and class D. Now if an object of type D is
declared, constructor A() is run 2 times. Similarly, destructor of A (~A()) is also run twice.
This causes serious problems. To avoid this, class A is declared as virtual base class of B and
C. Then, there will be only one instance of A.In C++, any function name can be used any
number of times except main(), with different argument list. This feature is known as overloading
of a function. This was discussed earlier in. Similarly most of the operators can also be
overloaded to give special meaning to the operators when used with those operators. In fact it
is a must to over load the operators, if new data types are to be created and operations on them
are to be defined.

12.2 VIRTUAL FUNCTIONS

Polymorphism

The definition for polymorphism is “having many forms”. Typically, polymorphism occurs
when there is a hierarchy of classes which are related by inheritance and the methods have the
same signature. Since a base class pointer can point to a derived class object, a call to a

160

member function using a base class pointer should select the proper derived class method
instead of base class method. This selection is achieved in C++ with the support of
polymorphism.

Consider the following example, which has a base class called Shape and the Rectangle and
Triangle are derived from it. A pointer to base class pointer is used to call the area in the main
function.

#include <iostream>

using namespace std;

class Shape {

protected: int w, h;

public:

Shape(int w = 0, int h = 0){

this->w = w;

this->h = h;

}

void area() {

cout << “Base class area: —” << endl; // No generic formula for area

}

};

class Rectangle: public Shape {

public:

Rectangle(int w = 0, int h = 0):Shape(w, h) { }

void area () {

cout << “Rectangle area: “ << w*h <<endl;

}

};

class Triangle: public Shape {

public:

Triangle(int w = 0, int h = 0):Shape(w, h) { }

void area () {

cout << “Triangle area :”<< (w*h/2.0f)<<endl;

}

};

class Circle: public Shape {

public:

161

Circle(int r=0):Shape(r) { }

void area () {

cout << “Circle area :” << (3.14157*w*w)<<endl;

}

};

// Main function for the program

int main() {

 Shape *shape;

 Rectangle r(10,5);

 Triangle t(10,5);

 Circle c(10);

 shape = &r;

 shape->area();

 shape = &t;

 shape->area();

 shape = &c;

 shape->area();

 return 0;

}

In all the cases it only takes the base class area which prints “Base class area: —” message
three times. This happens because the type information is bound to the pointer during compile
time and it only knows the base class. To get the correct results, just add the ‘virtual’ keyword
to the area() function in the base class.

virtual void area() { ...

This kind of automatic selection of appropriate function with base class pointer is known as
runtime polymorphism, where the function is selected at runtime rather than at compile time
as in case of non-virtual function.

Virtual Destructor

Consider A is the base class of B. Let B is allocating some memory in the constructor and
freeing it in the destructor. . If a base class type pointer is used to refer the derived class, and
then if we delete the object, then it tries to run the base class constructor only. To avoid this
memory leakage, it is necessary that the derived class constructor be also run when the base
class pointer is pointing to derived class objects. For this to run, the base class destructor is
made virtual. See the code snippet below:

class A {

 A() { .. }

 virtual ~A() { .. }

};

162

class B: public A {

 B() { .. }

 ~B() { .. }

};

main()

 {

 A *p;

 p = new B(); // Pointer of type base class pointing to derived class object

 delete p; // If ~A() is not virtual, then only ~A() is run.

 }

Virtual Base Class

Consider the case of diamond inheritance where class A is the base class of classes B and C
and D is derived from class B and class D. Now if an object of type D is declared, constructor
A() is run 2 times. Similarly, destructor of A (~A()) is also run twice. This causes serious
problems. To avoid this, class A is declared as virtual base class of B and C. Then, there will be
only one instance of A. Consider the following example, where, the virtual base class is used.
Try the same program without the virtual keyword.

#include <iostream.h>

using namespace std;

class A

 {

 public:

 A() { cout << “Base class A’s constructor \n”;}

 ~A() { cout << “Base class A’s destructor \n”; }

 };

class B: public virtual A

 {

 public:

 B() { cout << “Base class B’s constructor \n”;}

 ~A() { cout << “Base class B’s destructor \n”; }

 };

class C: virtual public A

 {

 public:

 C() { cout << “Base class C’s constructor \n”;}

 ~C() { cout << “Base class C’s destructor \n”; }

163

 };

class D: public B, public C

 {

 public:

 D() { cout << “Base class D’s constructor \n”;}

 ~D() { cout << “Base class D’s destructor \n”; }

 };

main()

 {

 D x;

 }

In the above program, observe virtual is used on either side of the public symbol. When one of
the base classes is virtual, its constructor is run first, irrespective of the place where it is
declared. Otherwise, the constructors are run in the order the base classes are declared. In this
case, constructor of A is run only once.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

1. What is polymorphism?

...

...

...

12.3 OPERATOR OVERLOADING

Operator Overloading

In C++, any function name can be used any number of times except main(), with different
argument list. This feature is known as overloading of a function. This was discussed earlier
in. Similarly most of the operators can also be overloaded to give special meaning to the
operators when used with those operators. In fact it is a must to over load the operators, if new
data types are to be created and operations on them are to be defined. The syntax is:

<type><class name>::operator <symbol>(argument list)

{

operations defined relative to the class

}

Example: Following example creates a new user defined data type for complex numbers along
with the basic operations on it + and =:

#include <iostream.h>

164

class complex

{

int x,y;

public:

complex operator + (complex);

complex operator = (complex);

void show(void);

void assign(int p, int q);

};

complex complex ::operator + (complex p)

{

complex temp;

temp.x = x+p.x;// x is short form of this->x

temp.y = y+p.y;

return temp;

}

complex complex::operator = (complex p)

{

x=p.x;

y=p.y;

return *this; // this is returned to facilitate cascading of =

}

void complex::show(void) { cout << “\n” << x <<“ +i “ << y; }

void complex::assign(int p, int q=0) { x=p; y=q; }

void main()

{

complex a,b,c;

a.assign(2,3);

b.assign(4,5);

a.show();

b.show();

c=a+b;

c.show();

c=a+b+c;

c.show();

a=b=c;

165

a.show();

b.show();

c.show();

}

Overloading I/O Operators (Insertion (<<) and Extraction (>>))

In some instances, the information hiding access rules are too prohibitive. The friend mechanism
gives nonmembers of the class access to the non-public members of a class. As an example, let
us consider the insertion operator, which is overloaded to print an object. Let the object is of
type A.

class A { ... }

A t;

 cout << t;

In this case, the operator << takes the objects on either side as parameters. ostream& and A&.
So the operator takes the form << (ostream&, A&). To print the private members of A, either
the data must be public, or the private members of the class must be accessible to <<, by means
of a friend keyword.The syntax is:

istream &operator >>(istream &<variable1>,<type>&<variable2>)

{

<your code here>

......

return <variable1>;

}

ostream &operator <<(ostream &<variable1>,<type>&<variable2>)

{

<your code here>

......

return <variable1>;

}

Observe the over loading of these operators in the examples.

#include <iostream.h>

using namespace std;

class complex

 {

 int x,y;

 public:

 friend istream& operator >> (istream& s, complex& c);

 friend ostream& operator << (ostream& s, complex& c);

166

 };

ostream & operator <<(ostream& s, complex& p)

{

s << “\n” << p.x << “ +i “ << p.y;

return s;

}

istream& operator >> (istream& s, complex& p)

{

cout <<“\nEnter real and imaginary parts : “;

s >> p.x >> p.y;

return s;

}

void main()

{

complex a;

cin >> a;

cout << a;

}

Note that in the original class, these streams are declared as friend functions. This is necessary
to have access of the private data that must be input or output.

Over Loading Unary Operators

Unary operators act on only one operand. For example ++ operates on only one operator like
x++ or ++x. In this case, since the ‘this’ operator is automatically sent to all the member
functions, it is not necessary to send any parameters. Chief disadvantage with unary increment
and decrement operators is that they have no left/right sensitivity.

For example, if i=1, j=i++ gives j=1, i=2 and j= ++i gives i=2, j=2. But in C++, if it is
overloaded, it always gives the result ofj= ++i.

A new way to distinguish these two cases is introduced later, where, for post increment, a
dummy integer is taken as a parameter. See the example below

#include <iostream.h>

class counter

{

int count;

public:

counter() { count=0;} // no argument constructor

counter(int c) { count=c;} // one argument constructor

int get_count() {return count;}

counter operator ++ (); // pre-increment

167

counter operator ++(int); // post-increment

};

counter counter::operator ++()

{

count ++; // this->count incremented

counter temp; // new counter declared.

temp.count = count;

return temp;

}

counter counter::operator ++(int dummy)

{

counter temp;

temp.count = count; // this->count is assigned to temp.count

this->count++;

return temp;

}

void main()

{

counter c1, c2(10);

cout <<“\n C1 = “ << c1.get_count();

cout <<“\n C2 = “ << c2.get_count();

c1= c2++;

cout <<“\n C1 = “ << c1.get_count();

cout <<“\n C2 = “ << c2.get_count();

c1= ++c2;

cout <<“\n C1 = “ << c1.get_count();

cout <<“\n C2 = “ << c2.get_count();

}

User defined Data Types

C++ supports the user defined data types with either struct or class. The main difference
between C user defined types and C++ user defined types is that the operators can be overloaded
appropriately in C++, which is not possible in C. An example of user defined data type is
presented above in the operator overloading section where complex user defined type is
presented.

168

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

2. What is function overloading?

...

...

...

12.4 TEMPLATES

Templates are powerful features of C++ which allows you to write generic programs. Using
templates, it is easy to create a single function or a class to work with different data types.
These are often used in larger coding projectse for the purpose of code reusability and flexibility
of the programs.

The concept of templates can be used in two different ways:

· Function Templates

· Class Templates

Function Templates

A function template works in a similar to a normal function, with one key difference. A single
function template can work with different data types at once but, a single normal function can
only work with one set of data types. Normally, if you need to perform identical operations on
two or more types of data, you use function overloading to create two functions with the
required function declaration.However, a better approach would be to use function templates
because you can perform the same task writing less and maintainable code.

Stax of funxtion templates

template<class T>

T someFunction(T arg)

{

}

In the above code, T is a template argument that accepts different data types (int, float), and
class is a keyword.You can also use keyword typename instead of class in the above
example.When, an argument of a data type is passed to someFunction(), compiler generates a
new version of someFunction() for the given data type.

Example: Finding smallest of two generic variables

using namespace std;

// template function

template <class T>

T Small(T g1, T g2)

{

169

return (g1 < g2) ? g1 : g2;

}

int main()

{

int t1, t2;

float f1, f2;

char c1, c2;

cout << “Enter two integers:\n”;

cin >> t1 >> t2;

cout << Small(i1, i2) <<“ is Smaller.” << endl;

cout << “\nEnter two floating-point numbers:\n”;

cin >> f1 >> f2;

cout <<Small(f1, f2) <<“ is Smaller.” << endl;

cout << “\nEnter two characters:\n”;

cin >> c1 >> c2;

cout <<Small(c1, c2) << “ has smaller ASCII value.”;

return 0;

}

Class Templates

Like function templates, class templates can be created for generic class operations. These are
useful on the occasions where a class is implemented for all classes, only the data types used
are different. Genarelly we create a different class for each data type or create different member
variables and functions within a single class. This will unnecessarily increase the source code
and will be hard to maintain, as the change is one class/function should be performed on all
classes/functions. Hence class templates make it easy to reuse the same code for all data
types.

Syntax of class template

template<class T>

class className

{

public:

 T var;

 T someOperation(T arg);

};

Where T is the template argument which is a placeholder for the data type used. Inside the
class body, a member variable var and a member function someOperation() are both of type T.

170

Syntax of creating a class template object

className<dataType> classObject;

Example

className<int> classObject;

className<float> classObject;

className<string> classObject;

 Example: Simple calculator using class template

#include <iostream>

using namespace std;

template <class T>

class Calculator

{

private:

T num1, num2;

public:

Calculator(T n1, T n2)

{

num1 = n1;

num2 = n2;

}

void displayResult()

{

cout << “Numbers are: “ << num1 << “ and “ << num2 << “.” << endl;

cout << “Addition is: “ << add() << endl;

cout << “Subtraction is: “ << subtract() << endl;

cout << “Product is: “ << multiply() << endl;

cout << “Division is: “ << divide() << endl;

}

T add() { return num1 + num2; }

T subtract() { return num1 - num2; }

171

T multiply() { return num1 * num2; }

T divide() { return num1 / num2; }

};

int main()

{

Calculator<int> intCalc(2, 1);

Calculator<float> floatCalc(2.4, 1.2);

cout << “Int results:” << endl;

intCalc.displayResult();

cout << endl << “Float results:” << endl;

floatCalc.displayResult();

return 0;

}

In the above program, the class contains two private members of type T: num1&num2, and a
constructor to initalize the members. It also contains public member functions to calculate the
addition, subtraction, multiplication and division of the numbers which return the value of
data type defined by the user. Likewise, a function displayResult() to display the final output
to the screen. In the main() function, two different Calculator objects intCalc and floatCalc are
created for data types: int and float respectively. The values are initialized using the constructor.

Check Your Progress

Note: a) Space is given below for writing your answers

b) Compare your answers with the one given at the end of the unit

3. What is a template?

...

...

...

12.5 SUMMARY

Virtual Function is a function in base class, which is overrided in the derived class, and which
tells the compiler to perform Late Binding on this function. In Late Binding function call is
resolved at runtime. Hence, now compiler determines the type of object at runtime, and then
binds the function call. Late Binding is also called Dynamic Binding or Runtime Binding. We
can call private function of derived class from the base class pointer with the help of virtual
keyword. Compiler checks for access specifier only at compile time. So at run time when late
binding occurs it does not check whether we are calling the private function or public function.
On using Virtual keyword with Base class’s function, Late Binding takes place and the derived
version of function will be called, because base class pointer pointes to Derived class object.

172

Templates are powerful features of C++ which allows you to write generic programs. Using
templates, it is easy to create a single function or a class to work with different data types.
These are often used in larger coding projectse for the purpose of code reusability and flexibility
of the programs. A function template works in a similar to a normal function, with one key
difference. A single function template can work with different data types at once but, a single
normal function can only work with one set of data types. Normally, if you need to perform
identical operations on two or more types of data, you use function overloading to create two
functions with the required function declaration.However, a better approach would be to use
function templates because you can perform the same task writing less and maintainable code.

12.6 CHECK YOUR PROGRESS MODEL ANSWERS

1. The definition for polymorphism is “having many forms”. Typically, polymorphism
occurs when there is a hierarchy of classes which are related by inheritance and the
methods have the same signature

2. In C++, any function name can be used any number of times except main(), with different
argument list. This feature is known as overloading of a function

3. Template creates a single function or a class to work with different data types

12.7 MODEL EXAMINATION QUESTIONS

I. Answer the following questions in about 30 lines each

1. Expalin virtual functions with an example

2. Explaing overloading of unary operator with code examples

3. Write a program to demonstrate function template

II. Answer the following questions in about 15 lines each

1. Describe virual base class with examples

2. Explain operator overloading with + operator with a code example

3. Write a program to demonstrate class template

12.8 GLOSSARY

Virtual function : Virtual Function is a function in base class, which is overrided
in the derived class, and which tells the compiler to perform
Late Binding

Template : Template creates a single function or a class to work with
different data types.

C++98 : The ISO C++ standard.

Const_cast : A C++ keyword used as a style of cast for explicitly casting
away const.

Dynamic type : The type of an object as determined at run-time.

173

. B.R. Ambedkar Open University

B.Sc / B.Com./ B.A.

2nd Year 3rd Semester (3 year degree course)

MODEL QUESTION PAPER

COMPUTER APPLICATIONS DSC-3

Programming with C and C++

[Time: 3 hours] [Max. Marks: 80]

Section – A
[Short Answer Questions]

[Marks: 4x5=20]

Note: a) Answer any four of the following in about 10 lines each

 b) Each question carries 5 marks

1. [Block-I] Explain Algorithm with an example.

2. [Block-I] Describe the primitive data types in C.

3. [Block-II] Describe do-while with a code example.

4. [Block-II] Write a program to find the factorial of a number using recursive
function.

5. [Block-III] Write a program to read, print two dimensional array.

6. [Block-III] Discuss passing structures to functions with a code example.

7. [Block-IV] Write a program to demonstrate function templates.

8. [Block-IV] Explain multiple inheritance with an example

Section –B

[Essay type]

[Marks: 4x10=40]

Note: a) Answer any four of the following in about 30 lines each

b) Each question carries 10 marks

9. [Block-I] Draw the flowchart to print prime numbers between 1 and 100.

(Or)

10. [Block-I] Write a program to demonstrate Arithmetic and assignment operators.

11. [Block-II] Explain switch and while with an example.

(Or)

12. [Block-II] Write a program to demonstrate operations on strings along with output

13. [Block-III] Describe Unions with an example.

(Or)

14. [Block-III] Write a program to copy one file to another file

 15. [Block-IV] Describe the types of constructors and destructor with examples.

(Or)

16. [Block-IV] Write a program to overload +, - operators.

174

Section –C
[Objective type questions]

[Marks: 20]
Total Number of questions 20-[15 from (Theory) and 5 from (Practical’s)]

I. Multiple choice questions (10 marks)

1. Abbreviation of Programming in Logic………… (3)
1) ProLang 2) Prologic 3) Prolog 4) LogicPro

2. Abbreviation of Common Business Oriented Language ………… (2)
1) COMBIL 2) COBOL 3) ALGOL 4) BASIC

3. Which of the followings is automatically added to every class, if we do not write our
own. (1)
1) Constructor 2) Member funciton 3) Class name 4) Private

4. Operator overloading is supported by ……………………feature of C++ (2)
1) Encapsulation 2) Polymorphism

3) Late Management System 4) Inheritance

5. A member function can always access the data in __________ , (in C++). (3)
1) Public member 2) Private member

3) Members of same class 4) Members of same object

6. ………………..is size of float data type in C (2)
1) 2 Bytes 2) 4 Bytes 3) 6 Bytes 4) 8 Bytes

7. In scanf () or printf() %u indicates……… (3)

1) Float 2) double 3) Unsigned int 4) Signed int

8. Out put of printf(“i= %d” , 123.45678 is (1)
1) 123 2) 123.45 3) 123.45678 4) .45678

9. if int *p,i=25; p=&I; then Out put of printf(*p) is ………………….. (2)
1) Comilation error 2) 25 3) 0xA2356B 4)) Runtime error

10. A member function with the class name deletes the objects ……………… (3)

1) Constructor 2) Delete operator 3) Destructor 4) This operator

II. Match the following (5 marks)

1. Encapsulation (c) a. Polymorphism

2. Pointer (e) b. Data type

3. Operator Overloading (a) c. Class

4. int (b) d. Generic Class

5. Template (d) e. Address variable

() f. Object

III. Fill in the blanks (5 marks)

1. Full form of SNOBOL StriNg Oriented and symBOlic Language

2. Full form of ALGOL is Algorithmic Language.

3. A pointer can hold Address of a variable.

4. A member function with class name which initialize members is Constructor.

5. In C++ members of structure are by default Public.

B.A/B.Com/B.Sc
SECOND YEAR

BS 415CA-E

SEMESTER-IV
DESCIPLINE SPECIFC CORE COURSE-DSC-4

COMPUTER APPLICATIONS

OPEN

DATA BASE MANAGEMENT SYSTEM

"We may forgo material benefits of civilization, but we cannot forgo our right

and opporturity to reap the benefts of the highest education to the fullest

extent as the education is the greatest material benefit"

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

Block/Unit

Unit-2:Entity-Relationship model

BLOCK-I: INTRODUCTION TO DBMS
Unit--1:Fundanmentals of DBMS

TInit-3:Relational Model

BLOCK-I: DBMS ARCHITECTURES

Unit-4:Normalization

Unit-6:Storage Structures

Unit-5:Data Base System Architectures and Data Models

Unit-7:File Organization

Unit-8: Storage Access

CONTENTS

Unit-9: Data Base Transactions

Title

Unit-10: Introduction to SQL

BLOCK-IV: STRUCTURED QUERY LANGUAGE

p1 0CK-III: FILE STRUCTURES AND TRANSACTION MANAGEMENT

Unit-12: Advanced SQL

Unit-11: SQL Data Manipulation Language

Model Question Paper

Page

3

3- 12

13 - 29

30- 43

45

47-57

58 -81

82 - 93

95

97 - 115

116 - 129

130 - 144

145

147 - 164

165 - 178

179 - 186

187 - 188

“We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest

extent as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

UG 405 SEE (CA 1)-E

B.A/B.Com/B.Sc
SECOND YEAR SEMESTER-IV

SKILL ENHANCEMENT COMPULSORY COURSE-SECC-1

COMPUTER APPLICATIONS

MULTIMEDIA APPLICATIONS USING GIMP

CONTENTS

Block/Unit Title Page

BLOCK – I: THEORY OF MULTIMEDIA 1

Unit-1: Fundamentals of GIMP and Multimedia: 3 -15

Unit-2: Working with Images 16 -29

Unit-3: Sound and Video 30 -47

Unit-4: Making Multimedia 48 -60

BLOCK – II: MULTIMEDIA WITH GIMP 61

Unit-5: Basics of GIMP 63 -87

Unit-6: Quick Mask, Layer Mask, Layers, Paths 88 -111

Unit-7: Advanced Features of GIMP 112 -145

Unit-8: Animation with GIMP 146 -162

Model Question paper 163-164

v

“We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest

extent as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

UG 405 SEE (CA 2)-E

B.A/B.Com/B.Sc
SECOND YEAR SEMESTER-IV

SKILL ENHANCEMENT COMPULSORY COURSE-SEE-CA-2

COMPUTER APPLICATIONS

MULTIMEDIA APPLICATIONS USING BLENDER

CONTENTS

Block/Unit Title Page

BLOCK – I: FUNDAMENTALS OF BLENDER 3

Unit-1: Blender User Interface: 3-20

Unit-2: Rendering with Blender 21-37

Unit-3: Shading and Rendering 38-62

Unit-4: Blender Layers and Passes 63-76

BLOCK – II: ADVANCED FEATURES OF BLENDER 77

Unit-5: Blender Modeling 79-94

Unit-6: Animation and Rigging 95-116

Unit-7: Visual Effects and Simulation 117-136

Unit-8: Video Editing 137-155

Model Question Paper 156-157

v

B.A/B.Com/B.Se
THIRD YEAR SEMESTER-V

DESCIPLINE SPECIFIC CORE COURSE-DSC-5

BS 515 CA-E

COMPUTER APPLICATIONS
PROGRAMMING WITH JAVA

WVERSIT

MBEOKaR. OPEN UNIVE

We may forgo material benefits of civilization, but we cannot forgo our right

and oppotunity to reap the benefits of the highest education to the fullest
extent as the education is the greatest material benefit"

HYDERABAD

2023

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

Block/Unit

BLOCK- I: BASIC FEATURE OF JAVA

Unit-1:

Unit-2:

Unit-3:

Unit-4:

Unit-5:

BLOCK- II: JAVA AND 00Ps

Unit-6:

Unit-7:

Unit-8:

Unit-9:

Introduction to Java Language

Data Types

Unit-10:

Unit-11:

Java Operators and Control Structures

BLOCK- II: ADDITIONAL FEATURES OF JAVA

CONTENTS

Introduction to Classes and Objects

Additional Features of Java OOPs

Inheritance and Abstract Classes

Packages and Interfaces

Java Exception Handling

Title

Java Collections

BLOCK - IV: BACK-END AND FRONT-END TOOLS OF JAVA

Java Data Base Connectivity

Java AWT and Event Handljng

Model Question Paper

Unit-12: Java Visual Programming with Swing

Page

3-14

15 -22

23 - 40)

41

43 - 55

56 - 69

70 - 81

83

85-94

95 - 109

110 - 127

129

131 - 144

145- 158

159- 184

185 - 187

B.A/B.Com/B.Se

THIRD VEAR

BS S15 CA DSE A)-E

DESCIPLUNE SPECWC EECTIVE OVRSEDSC1

eot,

(OMPUTER APPLICA'IONS

OPERATING SYSTEMS

SEDNAt RIASNN

SEMESTERN

0PEN

"We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest

extent as the education is the greatest material benefit"

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2023

Block/Unit

Unit-1:

BLOCK- 1: INTRODUCTON TO OPERATING SYSTEMS

Unit-2:

Unit-3:

Unit-4:

Unit-5:

Unit-6:

BLOCK-II: MANAGEMENTOFFILES, INPUT/OUTPUT

Unit-7:

Unit-8:

Unit-9:

Unit-10:

Processes and Threads

Unit-11:

Fundamentals of Operating Systems

Memory Management

Unit-12:

BLOCK- II: VIRTUALIZATION AND CLOUD MANAGEMENT

File Systems

Input/Output
Dead Locks

CONTENTS

Virtualization and Cloud - I

Virtualization and Cloud-II

BLOCK- IV: OPERATING SYSTEM SECURITY

Multiple Processor Systems

Title

Security-I

Security-II

Android Case Study

Model Question Paper

Page

1

3-15.

16-40

41-65

67

69-93

94-125

126-144

145

147-159

160-185

186-196

197

199-215

216-233

234-255

256-257

B.A/B.COM/B.Sc
THIRD YEAR SEMESTER-VI

COMPUTER APPLICATIONS

BS615CA-E

INTERNET TECHNOLOGIES AND HTML5

MBEDKAR OPEN UNN

CATION AT
OUR

hORS DUA

�We may forgo naterial benefits of civilization, but we cannot forgo
our right and opportunity to reap the benefitsof the highest education
to the fullest extent as the education is the greatest m aterial benefit"

HYDERABAD
2022

-Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

BLOCK-1: Introduction to Data Communication and NetworkS
Unit - 1 : Introduction to data communication
Unit - 2 :Network Types
Unit - 3 :Transmission Media

BLOCK-2: LAN Technologies and OSI Layers

Unit � 4: LAN Technologies and Overview of OSI Layers:
Physical and Data Link Layers

CONTENTS

Unit - 5: OSI Layers: Network and Transport Layers

Unit -6: oSI Layers: Session, Presentation and Application Layers

BLOCK-3 : Hyper Text Markup Language- HTML -1

Unit -7:HTML and HTML Formatting

Unit - 8: HTML Styles

Unit -9 :HTML Forms

BLOCK-4 : Hyper Text Markup Language - HTML - 2

Unit-10: HTML Media

Unit- 11: CSS

Unit- 12: CSS Advance

Model question papers

1

3

13

24

37

39

49

57

63

65

75

92

103

105

115

155

195

B.A/B.Com/B.Sc
THIRD YEAR

BS 615 CA DSE (C) - E|

COMPUTER APPLICATIONS

SEMESTER-VI

DESCIPLINE SPECIFIC ELECTIVE COURSE - DSE(C)

Dr.

DATA STRUCTURES USING JAVA

BEDKAR OPEN UN

AION A Ar YOL:

"We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fuliest

extent as the education is the greatest material benefir"

-Dr. B,R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2023

Block/Unit

BLOCK-1: LISTS AND STACKS
-Bnit-1: Mathematical Review on Analysis of Algorithms
Unit-2: Stack Data Structure
Unit-3: List Data Structure

Title

BLOCK� II: QUEUES AND TREES

Unit-4: Queue Data Structure

Unit-5: Tree Data Structure

Unit-6: Specialised Trees

Unit-7 : Hashing
BLOCK- III: HASHING AND HEAPING

Unit-8 : Priority Queues (Heaps)
Unit-9 : Sorting -I

CONTENTS

Unit-10: Sorting II

BLOCK-IV: SEARCHING AND SORTING

Unit-11 : Searching

Unit-12 :Graphs

Model Question Paper

Page

1

3-18

19-40

41-67

67

71-96

97-124

125-159

161

163-186

187-196

197-212

213

215-227

228-239

240-257

258-259

_.mdtdæ

 yÓTT<ä{Ï dü+e‘·‡s¡+ yÓTT<ä{Ï ôd$TdüºsY

uÛÑ÷$C≤„q XÊg+

kÕ<Ûës¡D Ò̋ø£ uÛÖ‹ø£ uÛÑ÷$C≤„q XÊg+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

 ôV’≤<äsêu≤<é

2017

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH̊yÓ÷ >±˙,

düs√«‘·ÿèwüºyÓTÆq $<ä́ n+~+#̊ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#̊ neø±XÊ\qT,

Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äTμμ

`&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS116 GEO-T

V

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 kÕ<Ûës¡D uÛÑ÷$C≤„q XÊg+ 1

uÛ≤>∑+`1 uÛÑ÷$C≤„q XÊg+ |ü]~Û, n_Ûeè~Δ 3`12

uÛ≤>∑+`2 kÂs¡ e´edüú 13`21

uÛ≤>∑+`3 uÛÑ÷$T 22`32

K+&É+ `2 n+‘·s¡Z‘· uÛÖeT #·s¡́ \T 33

uÛ≤>∑+`4 |üs¡«‘ê\T 35`41

uÛ≤>∑+`5 uÛÑ÷ø£+bÕ\T 42`48

uÛ≤>∑+`6 n–ï|üs¡«‘ê\T 49`58

K+&É+ `3 ãVæ≤s¡Z‘· uÛÖeT #·s¡́ \T`1 59

uÛ≤>∑+`7 •˝≤XË’~∏\´+ 60 `69

uÛ≤>∑+`8 q<äT\T 70`88

uÛ≤>∑+`9 uÛÑ÷>∑s¡“¤»\+ 89`100

K+&É+ `4 ãVæ≤s¡Z‘· uÛÖeT #·s¡́ \T `2 101

uÛ≤>∑+`10 Væ≤e÷˙ q<ë\T 103`115

uÛ≤>∑+`11 düs¡düT‡\T, düeTTÁ<ë\T 116`134

uÛ≤>∑+`12 |üeHê\T 135`144

_.mdtdæ

 yÓTT<ä{Ï dü+e‘·‡s¡+ ¬s+&Ée ôd$TdüºsY

uÛÑ÷$C≤„q XÊg+

düŒ¤{Ïø£ XÊg+, Kì» XÊg+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

 ôV’≤<äsêu≤<é

2018

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH̊yÓ÷ >±˙,

düs√«‘·ÿèwüºyÓTÆq $<ä́ n+~+#̊ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#̊ neø±XÊ\qT,

Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äTμμ

`&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS216 GEO-T

V

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 düŒ¤{Ïø£XÊg+ 1

uÛ≤>∑+`1 : düŒ¤{Ïø£XÊg+ 3`25

uÛ≤>∑+`2 : düe÷ø£å, #·‘·Tc˛ÿD, $wüe÷ø£å e´edüú\T 26`36

uÛ≤>∑+`3 : @ø£q‘·, Á‹q‘·, wü{ÀÿD e´edüú\T 37`45

K+&É+`2 Kì» XÊg+ 47

uÛ≤>∑+`4 : Kì» XÊg |ü]#·j·T+ 49`57

uÛ≤>∑+`5 : KìC≤\ eØZø£s¡D 57`66

uÛ≤>∑+`6 : UìC≤\ uÛÖ‹ø£, s¡kÕj·Tq <Ûäsêà\T 67`79

K+&É+`3 Kì» ≈£î≥T+u≤\T 81

uÛ≤>∑+`7 : ˙k˛, kÕs√, ôd’ø√¢, ◊H√ dæ\πø≥T\T 83 `91

uÛ≤>∑+`8 : |òæ̋ À¢, f…ø√¢dæ*πø≥T\T, Ç‘·s¡ eTTK´ KìC≤\T 92`99

uÛ≤>∑+`9 : HêHé dæ*πø{Ÿ KìC≤\T 100`114

K+&É+`4 Á|üø±X̄ Kì» XÊg+ 115

uÛ≤>∑+`10 : Á|üø±X̄ Kì»XÊg+ n_Ûeè~Δ 117`127

uÛ≤>∑+`11 : <ÛäèeD dü÷ø£åà<ä]Ùì ` es¡íq 128`135

uÛ≤>∑+`12 : Kì» Á|üø±X̄ <Ûäsêà\qT ìsêΔ]+#·&É+ 136`147

_.mdtdæ
 ¬s+&Ée dü+e‘·‡s¡+ eT÷&Ée ôd$TdüºsY

uÛÑ÷$C≤„q XÊg+
n–ïeTj·T •˝≤XÊg+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X¯«$<ë´\j·T+
 ôV’≤<äsêu≤<é

2018

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH˚yÓ÷ >±˙, düs√«‘·ÿèwüºyÓTÆq
$<ä́ n+~+#˚ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#˚ neø±XÊ\qT, Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äT.

m+<äTø£+fÒ $<ä́ qT $T+∫q edüTÔ>∑‘· Á|üjÓ÷»qy˚T~ Ò̋<äTμμ
 `&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS316 GEO-T

V

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 •˝≤XÊg+ ` |ü]#·j·T+ 1

uÛ≤>∑+`1 : •˝≤ XÊg+ ` •\\ eØZø£s¡D 3`10

uÛ≤>∑+`2 : e÷>±à\ Ä$sê“¤eeTT, s¡ø±\T 11`19

uÛ≤>∑+`3 : e÷>±à\T, yê{Ï dü«uÛ≤e+ 20`27

K+&É+`2 n–ï•\\ \ø£åD≤\T 29

uÛ≤>∑+`4 : n–ï•\\ s¡÷bÕ\T 31`42

uÛ≤>∑+`5 : n–ï•\\ ì]à‘·T\T 43`49

uÛ≤>∑+`6 : n–ï•\\ ej·THê\T, dü÷ø£åàì]à‘·T\T 50`69

K+&É+`3 n–ï•\\ Ä$sê“¤e+ 71

uÛ≤>∑+`7 : e÷>±à\ düŒ¤{Ïø°ø£s¡D 73 `81

uÛ≤>∑+`8 : ãyÓHé Á|ü‹#·sê´ ìj·TeT+ 82`85

uÛ≤>∑+`9 : n–ï•\\ ñ<ä“¤e+ 86`92

K+&É+`4 n–ï•\\ eØZø£s¡D ` s¡ø±\T 93

uÛ≤>∑+`10 : n–ï•\\ eØZø£s¡D 95`105

uÛ≤>∑+`11 : n–ï•\\ es¡íq ` bÕ‘êfi¯ n–ï•\\T 106`112

uÛ≤>∑+`12 : n–ï•\\ es¡íq `ñ|übÕ‘êfi¯, n–ï|üs¡«‘· •\\T 113`119

_.mdtdæ
 ¬s+&Ée dü+e‘·‡s¡+ Hê\Ze ôd$TdüºsY

uÛÑ÷$C≤„q XÊg+

neπøå|ü, s¡÷bÕ+‘·s¡ ÁbÕ|æÔ •˝≤XÊg+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X¯«$<ë´\j·T+
 ôV’≤<äsêu≤<é

2019

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH˚yÓ÷ >±˙, düs√«‘·ÿèwüºyÓTÆq
$<ä́ n+~+#˚ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#˚ neø±XÊ\qT, Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äT.

m+<äTø£+fÒ $<ä́ qT $T+∫q edüTÔ>∑‘· Á|üjÓ÷»qy˚T~ Ò̋<äTμμ
 `&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS 416 GEO -T

V

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 neπøå|ü •˝≤ XÊg+ 1

uÛ≤>∑+`1 : neπøå|ü •\\ Ä$sê“¤e+ 3`11

uÛ≤>∑+`2 : neπøå|ü •\\ \ø£åD≤\T 11`22

uÛ≤>∑+`3 : neπøå|ü •\\ eØZø£s¡D 23`41

K+&É+`2 s¡÷bÕ+‘·s¡ ÁbÕ|æÔ•˝≤ XÊg+ `1 43

uÛ≤>∑+`4 : s¡÷bÕ+‘·s¡ ÁbÕ|æÔ ø±s¡ø±\T, Ø‘·T\T, 45`52

uÛ≤>∑+`5 : s¡÷bÕ+‘·s¡ ÁbÕ|æÔ •\\ Kì» \ø£åD≤\T 53`59

uÛ≤>∑+`6 : s¡÷bÕ+‘·s¡ ÁbÕ|æÔ •\\ ej·THê\T, ì]à‘·T\T, eØZø£s¡D 60`67

K+&É+`2 s¡÷bÕ+‘·s¡ ÁbÕ|æÔ•˝≤ XÊg+ `2 69

uÛ≤>∑+`7 : e÷>±à\T ` s¡÷bÕ+‘·s¡ ÁbÕ|æÔ 71`76

uÛ≤>∑+`8 : ¬ø{≤ø±¢dæºø˘ s¡÷bÕ+‘·s¡ ÁbÕ|æÔ 77`81

uÛ≤>∑+`9 : ñw”íj·T s¡÷bÕ+‘·s¡ ÁbÕ|æÔ 82`87

K+&É+`2 s¡÷bÕ+‘·s¡ ÁbÕ|æÔ•˝≤ XÊg+ `3 89

uÛ≤>∑+`10 : >∑‘·o\ ` ñw”íj·T s¡÷bÕ+‘·s¡ ÁbÕ|æÔ 91`96

uÛ≤>∑+` 11 : bÕ‘êfi¯ s¡÷bÕ+‘·s¡ ÁbÕ| æÔ 97`102

uÛ≤>∑+`12 : Á|ü‘˚́ ø£yÓTÆq uÛ≤s¡‘·<˚X¯|ü⁄ •\\T 103`108

“ We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest extent
as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2019

UG 405 SEE (GEO 1)-E

B.Sc
SECOND YEAR SEMESTER-IV

GEOLOGY
SKILL ENHANCEMENT ELECTIVE COURSE-SEE-1

REMOTE SENSING, GIS & GPS

V

CONTENTS

BLOCK / Unit Title Page

BLOCK – I: REMOTE SENSING

Unit-1 : Introduction to Geoinformatics : RS, GIS and GPS 3-17

Unit-2 : Remote Sensing Data Acquisition, Platforms and Sensors 18-31

Unit-3 : Remote Sensing Data Analysis 32-44

Unit-4 : Global Positioning System (GPS) 45-51

Block - II GIS & GPS

Unit-5 : Introduction to GIS and Its Linkage to RS 55-71

Unit-6 : GIS Data Products : Spatial and Attribute Data 72-81

Unit-7: Spatial Data Measurements and Analysis 82-100

Unit-8: Integration of RS, GIS, GPS and Applications 101-111

“ We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest extent
as the education is the greatest material benefit”

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2019

UG 405 SEE (GEO 2)-E

B.Sc
SECOND YEAR SEMESTER-IV

GEOLOGY
SKILL ENHANCEMENT ELECTIVE COURSE-SEE-2

GEOCHEMISTRY

V

CONTENTS

BLOCK / Unit Title Page

BLOCK- I Geochemistry-1 1

Unit-1 Basic Concepts of Geochemistry 3-12

Unit-2 Periodic table 13-22

Unit-3 Composition of Planets, Meteorites and Earth 23-29

Unit-4 Analytical Techniques –I 30-38

BLOCK-II Geochemistry-2 39

Unit-5 Geochemical Cycles 41-50

Unit-6 Geochemical classification and Distribution of elements 51-57

Unit-7 Water quality 58-66

Unit-8 Analytical Techniques –II 67-79

“ We may forgo material benefits of civilization, but we cannot forgo our
right and opportunity to reap the benefits of the highest education to the

fullest extent as the education is the greatest material benefit..

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

BS 516 GEO-E

B.Sc
THIRD YEAR SEMESTER-V

GEOLOGY

DISCIPLINE SPECIFIC COMPULSORY CORE COURSE

STRUCTURAL GEOLOGY

ECONOMIC GEOLOGY

V

CONTENTS

BLOCK / Unit Title Page

BLOCK-I STRUCTURAL GEOLOGY - FOUNDAMENTALS 1

Unit-1 : Structural Geology - An Introduction 3-8

Unit-2 : Mechanical Principles and Field Procedures 9-18

Unit-3 : Primary Structures 19-29

BLOCK-II IMPORTANT STRUCTURES 31

Unit-4 : Unconformities and Joints 33-42

Unit-5 : Folds 43-55

Unit-6 : Faults 56-70

BLOCK-III ECONOMIC GEOLOGY PROCESS OF FORMATION OF ORES 71

Unit-7 : Scope of Economic Geology 73-77

Unit-8 : Igeous Process or Primary Processes 78-92

Unit-9 : Secondary, Organic and Metamorphic Processes 93-106

BLOCK- IV DESCRIPTION OF ECONOMIC MINERAL DEPOSITS 107

Unit-10 : Metallic Minerals 109-119

Unit-11 : Non - Metallic Minerals 120-128

Unit-12 : Fules and Radio - Active Minerals. 129-135

Model Question Paper 136-137

“ We may forgo material benefits of civilization, but we cannot forgo our
right and opportunity to reap the benefits of the highest education to the

fullest extent as the education is the greatest material benefit..

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

BS 516 GEO DSE (A)-E

B.Sc
THIRD YEAR SEMESTER-V

GEOLOGY

DISCIPLINE SPECIFIC ELECTIVE - A

MINERAL EXPLORATION

MINERAL ECONOMICS

V

CONTENTS

BLOCK / Unit Title Page

BLOCK-I MINERAL EXPLORATION - I 1

Unit-1 : Principles and Strategies of Mineral Exploration 3-13

Unit-2 : Geological Exploration I - Physiographic and Mineralogical Guides 14-24

Unit-3 : Geological ExplorationII-Stratigraphic, Lithological & Structural Guides 25-41

BLOCK-II MINERAL EXPLORATION - II 43

Unit-4 : Geophysical Methods 45-51

Unit-5 : Geochemical and Geobotanical Methods 52-60

Unit-6 : Drilling Methods, Sampling Methods and Estimation of Ore Deposit 61-76

BLOCK-III MINERAL ECONOMICS - I 77

Unit-7 : Principles of Mineral Economics 79-86

Unit-8 : Methods of Mineral Dressing 87-94

Unit-9 : Classification of War Minerals : Strategic, Critical and Essential. 95-108

BLOCK- IV MINERAL ECONOMICS - II 109

Unit-10 : National Mineral Policy 111-119

Unit-11 : Conservation and Substitution of Minerals 120-129

Unit-12 : Growth of Mineral Industry - Mineral Legislation 130-144

Model Question Paper 145-146

“ We may forgo material benefits of civilization, but we cannot forgo our
right and opportunity to reap the benefits of the highest education to the

fullest extent as the education is the greatest material benefit..

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

BS 516 GEO DSE (B) -E

B.Sc
THIRD YEAR SEMESTER-V

GEOLOGY

DISCIPLINE SPECIFIC ELECTIVE - B

MINING GEOLOGY
ORE DRESSING

V

CONTENTS

BLOCK / Unit Title Page

BLOCK-I MINING GEOLOGY - 1 1

Unit-1 : Introduction - Mining Geology 3-8

Unit-2 : Methods of Breaking Rocks 9-16

Unit-3 : Open Cost Mining Methods 17-25

BLOCK-II MINING GEOLOGY - 2 27

Unit-4 : Underground Mining Methods 29-45

Unit-5 : Mine Drainage and Pumping 46-58

Unit-6 : Mining Environmental Issues 59-70

BLOCK-III ORE DRESSING - 1 71

Unit-7 : Introduction to Ore Dressing 73-82

Unit-8 : Crushing, Grinding and Sezing Methods 83-103

Unit-9 : Classification and Concentration Methods for Ore Dressing. 104-116

BLOCK- IV ORE DRESSING - 2 117

Unit-10 : Gravity and Flotation Concentration Methods 119-135

Unit-11 : Magnetic and Electric Separation Methods 136-144

Unit-12 : Flow sheets for Important ores 145-155

 Model Question Paper 156-157

_.mdtdæ

 eT÷&Ée dü+e‘·‡s¡+ Äs¡e ôd$TdüºsY

uÛÑ÷$C≤„q XÊg+

 uÛ≤s¡‘·<̊X̄ uÛÑ÷$C≤„q XÊg+

|ü⁄sêJe XÊg+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

 ôV’≤<äsêu≤<é

2020

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH̊yÓ÷ >±˙, düs√«‘·ÿèwüºyÓTÆq

$<ä́ n+~+#̊ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#̊ neø±XÊ\qT, Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äT.

m+<äTø£+fÒ $<ä́ qT $T+∫q edüTÔ>∑‘· Á|üjÓ÷»qẙT~ Ò̋<äTμμ

 `&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS 616 GEO - T

V

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 uÛ≤s¡‘·<̊X̄ uÛÑ÷$C≤„q XÊg+`I 1

uÛ≤>∑+`1 : düÔs¡XÊg ìj·Te÷\T, uÛÖeT ø±\|ü{Ïºø£ eT]j·TT uÛ≤s¡‘·<̊X̄ HÓ’dü]Zø£ dü«s¡÷|ü+ 3`21

uÛ≤>∑+`2 : Ä]ÿj·THé düeTT<ëj·T+ 22`34

uÛ≤>∑+`3 : Áb˛{Ïs√CÀsTTø̆ düeTT<ëj·T+ 35`48

K+&É+`2 uÛ≤s¡‘·<˚X¯ uÛÑ÷$C≤„q XÊg+` II 49

uÛ≤>∑+`4 : ù|*jÓ÷CÀsTTø̆, MTk˛CÀsTTø̆ eT]j·TT >√+&Ü«Hê düeTT<ëj·T+ 51`67

uÛ≤>∑+`5 : <äø£ÿqT Hê|ü\T, f…]̧j·TØ eT]j·TT ‘·s¡TD $Hê´kÕ\T 68`83

uÛ≤>∑+`6 : Ä+Á<ÛäÁ|ü<̊XŸ eT]j·TT ‘Ó\+>±D≤ uÛÑ÷ $C≤„q+ 84`95

K+&É+`3 |ü⁄sêJe XÊg+`I 97

uÛ≤>∑+`7 : |ü⁄sê JeXÊg+, •˝≤Jø£s¡D |ü]dæú‘·T\T, •˝≤C≤\ ñ|üjÓ÷>±\T 99`108

uÛ≤>∑+`8 : Je⁄\ eØZø£s¡D 109`120

uÛ≤>∑+`9 : bǫ̀ sê$Tìô|òsê, Á|üyêfi≤\T 121`142

K+&É+`4 |ü⁄sêJe XÊg+ ` II 143

uÛ≤>∑+`10 : >±Ák º̨bÕ&é, ôd|òü̋ ÀbÕ&é Je⁄\T 145`156

uÛ≤>∑+` 11 : ô|*dæbÕ&é, Áu≤øÏjÓ÷bÕ&é Je⁄\T 157`186

uÛ≤>∑+`12 : @øÏH√&Ósêà{≤, Áf…Æ̋ ÀÁu…’{Ÿ\T, Á>±b º̨̋ …’{Ÿ\T 187`203

e÷~] Á|üXÊï |üÁ‘·+ 204`206

_.mdtdæ

 eT÷&Ée dü+e‘·‡s¡+ Äs¡e ôd$TdüºsY

uÛÑ÷$C≤„q XÊg+

 &çdæ|æ¢Hé ôdŒdæ|òæø̆ m\øÏºyé ø√s¡T‡ ` dæ

uÛÑ÷>∑s¡“¤ »\ XÊg+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

 ôV’≤<äsêu≤<é

2020

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH̊yÓ÷ >±˙, düs√«‘·ÿèwüºyÓTÆq

$<ä́ n+~+#̊ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#̊ neø±XÊ\qT, Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äT.

m+<äTø£+fÒ $<ä́ qT $T+∫q edüTÔ>∑‘· Á|üjÓ÷»qẙT~ Ò̋<äTμμ

 `&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS 616 GEO DSE (C) - T

V

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 uÛÑ÷>∑s¡“¤ »\ XÊg uÛ≤eq\T 1

uÛ≤>∑+`1 : »\dü+ã+<Ûä e\j·TeTT 3`11

uÛ≤>∑+`2 : uÛÑ÷>∑s¡“¤ »˝≤\ ñìøÏ, $‘·s¡D 12`18

uÛ≤>∑+`3 : »\düÔs¡ <Ûäsêà\T - &ÜØ‡ ìj·TeT+ 19`27

K+&É+`2 uÛÑ÷>∑s¡“¤»\ nH˚«wüD 29

uÛ≤>∑+`4 : uÛÑ÷>∑s¡“¤»˝≤\ uÛÑ÷>∑s¡“¤ XÊÁd”Ôj·T nH̊«wüD 30`43

uÛ≤>∑+`5 : uÛÑ÷>∑s¡“¤ »˝≤\ uÛÑ÷uÛÖ‹ø£ nH̊«wüD 44`64

uÛ≤>∑+`6 : uÛÑ÷>∑s¡“¤ »˝≤\ n<Ûä́ j·THêìøÏ]yÓ÷{Ÿ ôdì‡+>¥, GIS |ü<äΔ‘·T\T 65`71

K+&É+`3 uÛÑ÷>∑s¡“¤»\ ø±\Twǘ + 73

uÛ≤>∑+`7 : uÛÑ÷>∑s¡“¤ »˝≤\ >∑TD+ 75`90

uÛ≤>∑+`8 : ˙{Ï ø±\Twǘ + 91`103

uÛ≤>∑+`9 : düeTTÁ<ä »\ n+‘·s¡ZeTq+ ` ìj·T+Á‘·D |ü<äΔ‘·T\T 104`114

K+&É+`4 uÛÑ÷>∑s¡“¤»˝≤\ j·÷»e÷q´+ 115

uÛ≤>∑+`10 : uÛÑ÷>∑s¡“¤ »˝≤\ j·÷»e÷q´+ 117`127

uÛ≤>∑+` 11 : »\$uÛ≤»ø£ πøåÁ‘·+ (yê≥sY ôw&é) j·÷»e÷q´+ 128`140

uÛ≤>∑+`12 : uÛÑ÷>∑s¡“¤ »˝≤\ qeT÷Hêø£s¡D+ 141`160

e÷~] Á|üXÊï |üÁ‘·+ 161`163

“ We may forgo material benefits of civilization, but we cannot forgo our
right and opportunity to reap the benefits of the highest education to the

fullest extent as the education is the greatest material benefit..

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

BS 616 GEO DSE (D) -E

B.Sc
THIRD YEAR SEMESTER-VI

GEOLOGY

DISCIPLINE SPECIFIC ELECTIVE - D

ENVIRONMENTAL GEOLOGY

V

CONTENTS

BLOCK / Unit Title Page

BLOCK-I ENVIRONMENTAL GEOLOGY- CONCEPTS 1

Unit-1 : Principles of Environmental geology 3-8

Unit-2 : Earth and its Spheres, Earth’s Materials 9-16

Unit-3 : Thermal Environments of Earth’s Surface. 17-24

BLOCK-II GEOLOGICAL HAZARDS 25

Unit-4 : Volcanoes, Earthquakes and Tsunamis 27-64

Unit-5 : Land slides and Subsidence 65-81

Unit-6 : Floods, cyclones and Drought 82-95

BLOCK-III RESOURCES AND ENVIRONMENTAL ISSUES 97

Unit-7 : Energy Resources - Environmental Issues 99-113

Unit-8 : Mineral Resources - Environmental Issues 114-124

Unit-9 : Water Resources - Environmental Issues.. 125-140

BLOCK- IV GLOBAL ENVIRONMENTAL ISSUES 141

Unit-10 : Global Warming - Climate Change 143-160

Unit-11 : Ozone Layer Depletion 161-172

Unit-12 : Acid Rain 173-181

Model Question Paper 182-183

BS117 MAT-T

2017

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the

highest education to the fullest extent…”

Dr.B.R.Ambedkar

-I:

-II:

-III:

-IV:

2017

BS217 MAT-T

-I:

 I

 II

-II:

-III:

-IV:

IV

BS317 MAT-T

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the

highest education to the fullest extent…”

Dr.B.R.Ambedkar

-I:

R

-II:

-III:

-IV:

2019

BS417 MAT-T

 I I

 II II

 III I

 IV II

iv

UG 405 SEE (MAT 1) - E

B.Sc.
SECOND YEAR SEMESTER - IV

MATHEMATICS

SKILL ENHANCEMENT ELECTIVE COURSE - SEE - 1

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2019

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the

highest education to the fullest extent…”

Dr.B.R.Ambedkar

PROBABILITY & STATISTICS

CONTENTS

BLOCK/UNIT TITLE PAGE

Block-I: Measures of Central Tendency 1

Unit -1: Measures of Central Tendency - I 2-22

Unit-2: Measures of Central Tendency-II 23-42

Unit - 3: Measure of Dispersion - I 43-59

Unit-4: Measures of Dispersion-II 60-74

Block-II: Probability 75

Unit - 5: Probability 76-91

Unit-6: Some Theorems on Probability 92-104

Unit-7: Independent and Dependent Events 105-116

Unit-8: Bayes’ Theorem 117-126

Model Question Paper 127-129

IV

UG 405 SEE (MAT 2) - E

B.Sc.

SECOND YEAR SEMESTER - IV

MATHEMATICS

SKILL ENHANCEMENT ELECTIVE COURSE-SEE-2

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2019

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the

highest education to the fullest extent…”

Dr.B.R.Ambedkar

GRAPH THEORY

CONTENTS

BLOCK/UNIT TITLE PAGE

Block-I: Connectedness and Traversability in Graphs 1

Unit -1: Graphs - Terminology and Basic Concepts 2-23

Unit -2: Connectedness - Complete, Regular and Bipartite Graphs 24-41

Unit -3: Vertex and Edge Connectivity in Graphs 42-54

Unit - 4: Traversability: Eulerian and Hamiltonian Graphs 55-67

Block-II: Planarity, Matrix Representations and Shortest Paths in Graphs 68

Unit - 5: Matrix Represenation and Isomorphism in Graphs 69-90

Unit - 6: Directed Graphs 91-112

Unit - 7: Planar Graphs and Graph Colouring 113-128

Unit - 8: Shortest Path and Shortest Circuit Problems 129-145

Model Examination Question Paper 146-148

IV

_.mdtdæ.

eT÷&Ée dü+e‘·‡s¡+ ôd$TdüºsY ` 5

BS 517 MAT – T

s¡TE ;» >∑DÏ‘·+

>∑DÏ‘·XÊÁdüÔ+

&Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

ôV’≤<äsêu≤<äT

2020

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê\qT e<äT\Tø√y=#·TÃH˚yÓ÷>±ì, düs√«‘·ÿ èwüºyÓTÆq $<ä́ n+~+#˚

|òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#˚ neø±XÊ\qT, Vü≤≈£îÿ\qT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äTμμ.

` &Üˆˆ _.ÄsY. n+uÒ<äÿsY

IV

$wüj·Tdü÷∫ø£$wüj·Tdü÷∫ø£$wüj·Tdü÷∫ø£$wüj·Tdü÷∫ø£$wüj·Tdü÷∫ø£

Áø£eT dü+K´ K+&É+/uÛ≤>∑+ |ü⁄≥ dü+K´

K+&É+ ` I : dü~XÊ+‘·sêfi≤\T 1-34

uÛ≤>∑+ ` 1 : dü~XÊ+‘·sêfi≤\T ̀ ñbÕ+‘·sêfi≤\T 2-13

uÛ≤>∑+ ` 2 : Ä<Ûës¡eTT eT]j·TT |ü]e÷DeTT 14-26

uÛ≤>∑+ ` 3 : e⁄´‘·Œqï n+‘·sêfi≤\T 27-34

K+&É+ ` II : ãTTE |ü]es¡Ôq, <ëì e÷Á‹ø£ 35-79

uÛ≤>∑+ ` 4 : ãTTE |ü]es¡Ôq\T 36-49

uÛ≤>∑+ ` 5 : ø√{Ï eT]j·TT X̄Sq´‘· 50-62

uÛ≤>∑+ ` 6 : ãTTE |ü]es¡Ôq jÓTTø£ÿ e÷Á‹ø£ 63-80

K+&É+ ` III : ˝≤ø£åDÏø£ $\Te\T eT]j·TT ̋ ≤ø£åDÏø£ dü~X̄\T 81-117

uÛ≤>∑+ ` 7 : ÁbÕ<∏ä$Tø£ |ü]es¡Ôq\T eT]j·TT kÕ<Ûës¡D s¡÷|üeTTq≈£î

\|òüT÷ø£]+#·T≥ (≈£î~+#·T≥) 82`96

uÛ≤>∑+ ` 8 : @ø£|òü÷‘· düMTø£s¡D e´edüú 97`109

uÛ≤>∑+ ` 9 : ˝≤ø£åDÏø£ eT÷˝≤\T, dü~X̄\T ̀ πø Ò̋ Vü‰$T Ÿ̋≥Hé dæ<ëΔ+‘·eTT 110`117

K+&É+ ̀ IV : ~«|òü÷‘· s¡÷bÕ\T eT]j·TT n+‘·s¡\ãΔ n+‘·sêfi≤\T 118-153

uÛ≤>∑+ ` 10 : ~«|òü÷‘· s¡÷bÕ\T 119`130

uÛ≤>∑+ ` 11 : n+‘·s¡¢ãΔ n+‘·sêfi≤\T 131`140

uÛ≤>∑+ ` 12 : \+u≤‘·àø£‘· eT]j·TT Á>±+`dæà‘Y \+;ø£s¡D |ü<äΔ‹ 141`153

e÷<ä] |üØøå± Á|üXÊï |üÁ‘·+ 154`157

B. Sc.

THIRD YEAR SEMESTER - V

MATHEMATICS

DISCIPLINE SPECIFIC ELECTIVE COURSE - A

THREE DIMENSIONAL GEOMETRY

“We may forgo material benefits of civilization, but we cannot forgo our right and

opportunity to reap the benefits of the highest education to the fullest extent as the

education is the greatest material benefit.”

Dr. B.R. Ambedkar

Dr.B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2020

BS517MATDSE(A)-E

CONTENTS

BLOCK / UNIT TITLE PAGE No.

BLOCK - I : Cartesion Co-ordinates and Plane 1

Unit - 1 : Cartesian Co-ordinates, Direction Cosines and Direction Ratios 3 - 40

Unit - 2 : The Plane and Various Forms of the Equation of a Plane 41 - 66

Unit - 3 : Bisectors of the Angles Between Two Planes and
Two Sides of a Plane 67 - 96

BLOCK – II : The Straight Line 97

Unit - 4 : Straight Line and Various Forms of the Equation of a

Straight Line 99 - 127

Unit - 5 : Skew Lines and Shortest Line Segment Between
Two Skew Lines 128 - 153

Unit - 6 : Change of Axes 154 - 176

BLOCK – III : The Sphere 177

Unit - 7 : Sphere, Circle, Intersection of Sphere and a Line 179 - 194

Unit - 8 : Tangent Plane, Normal Plane and Polar Planes of a Sphere 195 - 215

Unit - 9 : Radical Plane and Coaxial System of Spheres 216 - 227

BLOCK – IV : Cone and Cyclinder 229

Unit - 10 : Cone, Intersection of a Cone with a Plane and a Line 231 - 249

Unit - 11 : Enveloping Cone, Reciprocal Cone and Right Circular Cone 250 - 267

Unit - 12 : The Cyclinder and the Right Circular Cylinder 268 - 280

Model Question Paper 281 - 284

V

B.Sc.

MATHEMATICS
DISCIPLINE SPECIFIC ELECTIVE COURSE - B

LINEAR PROGRAMMING PROBLEMS

THIRD YEAR SEMESTER – 5

“We may forgo material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

BS 517 MAT DSE (B)-E

IV

CONTENTS

BLOCK / Unit Title Page

BLOCK-I LPP, Methods of Solving 1-56

Unit-1 : Formation of Linear Programming Problem 2-17

Unit-2 : Graphical Method of Solving LPP 18-33

Unit-3 : Simplex Method of Solving LPP, Basic Simplex Method 34-56

BLOCK-II Degeneracy, Big - M Method 57-89

Unit-4 : Degeneracy in LPP 57-66

Unit-5 : Big - M Method 67-79

Unit-6 : Two Phase Simplex Method 80-89

BLOCK-III Primal, Dual LPP 90-115

Unit–7 : Primal and Dual LPPs 91 - 98

Unit–8 : Relationship Between Primal and Dual LPP’s 99 -106

Unit–9 : Solution by Dual Simplex Method 107 - 115

BLOCK-IV Transportation, Assignment Problems 116-160

Unit–10 : Transportation and Assignment Problems 117 - 128

Unit-11 : Solution of the Transportation problem, IBFS 129 - 141

Unit-12 : Test of optimality, Degeneracy, Resolution 142 - 155

 Model Question Paper 156 - 160

:

BS617MAT - T

I :

 :

 :

 :

II : I

 :

 :

 :

III : II

 :

 :

 :

IV :

 :

 : I

 : II

V

BS 617 MAT DSE(C)–T

_.mdtdæ.

eT÷&Ée dü+e‘·‡s¡+ ôd$TdüºsY ` VI

$s¡fī >∑DÏ‘· ì]à‘·T\T

>∑DÏ‘·XÊÁdüÔ+

&çdæ|æ¢Hé ôdŒdæ|òæø˘ m\ÁøÏºyé ø√s¡T‡`dæ

&Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

ôV’≤<äsêu≤<äT

2020

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’Hê e<äT\Tø√y=#·TÃH˚yÓ÷>±ì, düs√«‘·ÿ èwüºyÓTÆq $<ä́ n+~+#˚

|òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#˚ neø±XÊ\qT, Vü≤≈£îÿ\qT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äTμμ.

` &Üˆˆ _.ÄsY. n+uÒ<äÿsY

IV

$wüj·Tdü÷∫ø£

Áø£eT dü+K´ K+&É+/uÛ≤>∑+ |ü⁄≥ q+.

K+&É+ ` I : ‘·s¡ÿeTT jÓTTø£ÿ eT÷\ dæ<ëΔ+‘ê\T 1-60

uÛ≤>∑+ ` 1 : Á|üe#·Hê\T eT]j·TT dü+<ÛëqeTT\T (dü+jÓ÷»ø±\T) 2-16

uÛ≤>∑+ ` 2 : dü÷Á‘·eTT\ düeT‘·T´\‘· eT]j·TT kÕe÷q´ s¡÷|üeTT\T 17-42

uÛ≤>∑+ ` 3 : Á|üe#·q ø£\q>∑DÏ‘·+q≈£î nqT$T‹ dæ<ëΔ+‘·+ 43-60

K+&É+ ` II : eTTK´ ìj·Te÷\T, »qHé Á|üẙTj·÷\T 61-117

uÛ≤>∑+ ` 4 : n+‘·sê“¤>∑ eT]j·TT es¡®q ìj·TeT+ eT]j·TT >∑DÏ‘êqT>∑eTq dü÷Á‘·eTT 62-81

uÛ≤>∑+ ` 5 : »qø£ Á|üẙTj·÷\T 82-96

uÛ≤>∑+ ` 6 : Äeè‘·Ô dü+ã+<Ûë\T 97-117

K+&É+ ` III : Á>±|òt\ eTs=ø£ uÛ≤eq\T, dü+<Ûëì‘·‘·«eTT 118-186

uÛ≤>∑+ ` 7 : Á>±|òt\T ̀ ø=ìï eTÚ*ø£ uÛ≤eq\T, s¡ø£eTT\T 119`139

uÛ≤>∑+ ` 8 : ñ|üÁ>±|òt\T, e÷Á‹ø£ es¡íq, Á>±|òt\ ‘·T\´ s¡÷|ü‘· 140`164

uÛ≤>∑+ ` 9 : dü+<Ûëì‘·‘·«eTT, Äj·TT©]j·THé eT]j·TT Vü‰$T˝§ºìj·THé Á>±|òt\T 164`186

K+&É+ ̀ IV : düeT‘·©j·T Á>±|òt\T, Á|üyêVü‰\T 187-244

uÛ≤>∑+ ` 10 : eèø£åeTT\T, u…’q] eèø£åeTT\T, $düÔè‘· eèø£åeTT\T 188`211

uÛ≤>∑+ ` 11 : düeT‘·©j·T Á>±|òt\T, Á>±|òt eØZø£s¡D 212`231

uÛ≤>∑+ ` 12 : C≤\eTT q+<äT Á|üyêVü≤eTT\T 232`249

e÷~] |üØøå± Á|üXÊï |üÁ‘·+ 250-253

BS 617 MAT DSE (D) - E

B.Sc.

THIRD YEAR SEMESTER - VI

MATHEMATICS

DISCIPLINE SPECIFIC ELECTIVE COURSE - D

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2021

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the

highest education to the fullest extent…”

Dr.B.R.Ambedkar

VECTOR CALCULUS

CONTENTS

BLOCK/UNIT TITLE PAGE

Block - I : Vector Differential Calculus 1

Unit - 1: Basic Vector Algebra 2-54

Unit - 2: Differentiation of Vector Point Functions, Curves, Tangents, Arc Length 55-86

Unit - 3: Gradient, Divergence, Curl Operators and their Algebra 87-129

Block - II : Multiple Integrals 130

Unit - 4: Transformations, Polar, Spherical Polar, Cylindrical Polar Coordinates 131-151

Unit - 5: Double Integrals, Change of Order of Integration 152-172

Unit - 6: Triple Integrals, Applications of Multiple Integrals 173-194

Block - III : Vector Integration 195

Unit - 7: Line Integrals and Surface Integrals 196-227

Unit - 8: Volume Integrals and Applications of Vector Integration 228-246

Unit - 9: Curvilinear Coordinates 247-265

Block - IV : Integral Theorems 266

Unit - 10:Green’s Theorem and its Applications 267-294

Unit - 11: Stoke’s Theorem and its Applications 295-318

Unit - 12:Gauss’s Divergence Theorem and its Applications 319-343

Model Question Paper 344-347

iv

3118-218-phy-EM-QTY-2500

F-1

B.Sc.

FIRST YEAR SEMESTER� I

PHYSICS

COURSE-1: MECHANICS

PE

KMSEOKAR OPEN UNVE

UCATION AT YOUR

BSI18PHY-E

RSITY

DooRSTs

"We may forgo material benefits of civilization, but we
cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent...

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2022

BLOCK-I MECHANICS OF PARTICLES

UNIT-1: Introduction to Vectors

UNIT-2:

UNIT-4:

Vector Calculus

UNIT-3: Linear Momentum and Collisions

CONTENTS

Kinematics

BLOCK-II MECHANICS OF RIGID BODIES

UNIT-7:

UNIT-5: Centre of Mass, Motion of Centre of Mass, Reduced Mass

UNIT-6: Torque and Rotational Motion

Conservation of Angular Momentum

BLOCK-III CENTRAL FORCES

UNIT-8: Introduction to Central Forces

UNIT-9: Motion of Planets and Satellites -Kepler's Laws.
UNIT-10: Gravitational Field and Gravitational Potential

BLOCK-IV RELATIVITY

UNIT-11: Special Theory of Relativity
UNIT-12: Applications of special theory of Relativity
Model paper

1

2-9

10 -27

28 -39

40- 51

52

53 - 65

66- 845

86 - 103

104

105 - 118

119 - 129

130 - 142

143

144 - 151

152 - 168

169 - 171

1I

B.Sc218PHY-T

 “We may forgo material benefits of civilization, but we

cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

- Dr. B. R. Ambedkar

5

 I :

 : 09-23

 : 24-31

 : 32-48

 : 49-74

 II : - I

 : 77-84

 : 85-91

 III : - II

 : 95-111

 : 112-130

 : 131-148

 IV:

 : 155-168

 : 169-186

 : 195-206

BS318 PHY-T

2018

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the

highest education to the fullest extent…”
Dr.B.R.Ambedkar

IV

-I:

 45-57

-II:

 68-79

-III:

-IV:

1

BS 418 PHY-T

 We may forgo material benefits of civilization, but we cannot
 forgo our right and opportunity to reap the benefits of the
 highest education to the fullest extent.....”

 Dr. B. R. Ambedkar

5

I:

II

III:

IV:

UG 405 SEE (PHY1)-T

 - IV

 (SEE) - 1

 ”

 ”

2019

 I

1:

- 2:

- 3:

- 4:M.C.B

 II

- 5:

- 6:

- 7:

- 8:

v

UG 405 SEE (PHY 2)-E

B.Sc.

PHYSICS

SECOND YEAR SEMESTER - IV

SKILL ENHANCEMENT ELECTIVE COURSE - SEE-2

MOBILE PHONE REPAIRING AND
MAINTENANCE

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2019

 “We may forgo material benefits of civilization, but we

cannot forgo our right and opportunity to reap the benefits

of the highest education to the fullest extent as the education is the
greatest material benefit”

 - Dr. B. R. Ambedkar

CONTENTS

Page No.

Block-I: Basic Electronics 1

Unit 1: Introduction to Basic Electronics 3

Unit 2: Types of Mobile Phones and Potential Hazards 13

Unit 3: Mobile phones technology 19

Unit 4: Cellular concepts and Block Diagram of mobile phones 31

Block-II: Mobile phones repairing and maintenance 43

Unit 5: Parts of a Conventional Mobile Phone 45

Unit 6: Assembling and Disassembling a Mobile Cell Phone 60

Unit 7: Diagnosing and Repairing Mobile Phone 64

Unit 8: Faults & Causes of mobile phones 74

V

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

THIRD YEAR SEMESTER – V

“We may forego material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

B.Sc.

BS 518 PHY-E

ELECTROMAGNETISM

PHYSICS

IV

C O N T E N T S

Block/Unit No. Title Page No.

Block I: Electrostatics 1-66

Unit-1: Electric Field and Gauss Theorem 2-16

Unit-2: Electric Potential 17-31

Unit-3: Capacitance 32-41

Unit-4: Parallel Plate Condenser 42-66

Block II: Current Electricity 67-115

Unit - 5: Electrical Conductivity 68-82

Unit - 6: Kirchoff's Laws 83-94

Unit - 7: Network Theorems 95-115

Block III: Magnetostatics 116-144

Unit - 8: Ampere's Law 117-125

Unit - 9: Biot-Savart's Law 126-137

Unit - 10: Magnetic Field and Magnetic Force on a Circuit – Torque 138-144

Block IV: Electromagnetic Induction 145-166

Unit - 11: Self Induction and Mutual Inductances 146-151

Unit - 12: Faraday's Law and Lenz's Law 152-166

• Model Examination Question Paper 167-169

1

BS 518 PHY DSE (A) - E

B.Sc.

PHYSICS

THIRD YEAR SEMESTER-V

BASIC ELECTRONICS
Discipline Specific Elective (DSE) - A

 We may forgo material benefits of Civilization, but we cannot
 forgo our right and opportunity to reap the benefits of the
 highest education to the fullest extent.....”

 Dr. B. R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

4

CONTENTS

Pages

BLOCK-I SEMI CONDUCTORS .. 5

Unit-1: Semi Conductors - PN Junction diodes ... 7

Unit-2: Transistor Configurations and Characteristics 26

Unit-3: Special Semiconductor Devices .. 46

BLOCK-II TRANSISTOR AMPLIFIERS .. 63

Unit-4: Transistor Biasing and Load Line Analysis 65

Unit-5: An Introduction Amplifiers... 73

Unit-6: Common Emitter Amplifier .. 85

Unit-7: Power Amplifier ... 93

BLOCK-III OSCILLATORS AND MULTIVIBRATORS 103

Unit-8: Oscillators: Barkhausen's Criterion And L-C Oscillators 105

Unit-9: Multivibrators ... 116

BLOCK-IV POWER SUPPLIES AND REGULATION 127

Unit-10: Rectifiers and Filters .. 129

Unit-11: Voltage Regulation ... 140

Unit-12: Functioning of Cathode Ray Oscilloscope 154

BS 518 PHY - (DSE-B)

B.Sc
THIRD YEAR SEMESTER-V

DISCIPLINE SPECIFIC ELECTIVE COURSE-B

PHYSICS
MATERIAL SCIENCE

“We may forgo material benefits of civilization, but we cannot

forgo our right and opportunity to reap the benefits of the highest

education to the fullest extent...”

 Dr. B.R.Ambedkar

DR. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

CONTENTS

Pages

BLOCK-I Properties of Materials ... 1-53

Unit-1: Mechanical properties ... 1-24

Unit-2: Elastic behavior of materials. .. 25-32

Unit-3: Deformation of crystalline materials. ... 33-40

Unit-4: Corrosion .. 41-53

BLOCK-II Introduction to Thin films ... 57-88

Unit-5: Vaccum techniques ... 57-71

Unit-6: Thin film deposition methods ... 72-80

Unit-7: Thin film formation .. 81-88

BLOCK-III Thin Films and Their Properties ... 91-138

Unit-8: Elecrical properties of thin metal film 91-112

Unit-9: Dielectric properties of thin film ... 113-126

Unit-10: Optical Properties of thin Film .. 127-138

BLOCK-IV Instrumentation.. 141-155

Unit-11: Techniques and Measurments-I. ... 141-149

Unit-12: Techniques and Measurements-II. .. 150-155

IV

BS 618 PHY - TM

 6

 We may forgo material benefits of Civilization, but we cannot
 forgo our right and opportunity to reap the benefits of the
 highest education to the fullest extent.....”

 Dr. B. R. Ambedkar

I:

II:

III:

IV:

iv

1

BS 618 PHY DSE (C) - E

B.Sc.

PHYSICS

THIRD YEAR SEMESTER-VI

DIGITAL ELECTRONICS AND
COMMUNICATIONS

Discipline Specific Elective (DSE-C)

 We may forgo material benefits of Civilization, but we cannot
 forgo our right and opportunity to reap the benefits of the
 highest education to the fullest extent.....”

 Dr. B. R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

4

CONTENTS

Pages

BLOCK-I Operational Amplifiers

Unit-1: Difference Amplifier ... 7

Unit-2: Operational Amplifier and its Characteristic Parameters 13

Unit-3: Operational Amplifier - Configurations and Analysis............. 21

BLOCK-II Measuring Instruments

Unit-4: Analog measuring Instruments .. 33

Unit-5: Digital measuring Instruments ... 46

BLOCK-III Digital Electronics

Unit-6: Number system and Logic gates .. 59

Unit-7: Combinational & Sequential Logic Circuits 73

Unit-8: Fundamentals of Microprocessors ... 85

BLOCK-IV Modulation and Demodulation

Unit-9: Amplitude Modulation and Demodulation 101

Unit-10: Frequency Modulation and Demodulation 110

Unit-11: Elements of Superheterodyne Receiver 117

Unit-12: Television: Transmission and Reception 123

B.Sc.

PHYSICS OF NANOMATERIALS

PHYSICS
THIRD YEAR SEMESTER – VI

“We may forgo material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

BS618 PHY DSE(D)–EM

Discipline Specific Elective Course-D

IV

C ON TE NT S

Block/Unit No. Title Page No.

Block - I: Fundamentals of Nanomaterials 1-35

Unit-1: An introduction to Nanomaterials 2-9

Unit-2: Synthesis of Nanomaterials 10-18

Unit-3: Characteristic Techniques 19-35

Block - II: Properties of Nanomaterials-I 36-132

Unit-4: Electronic Properties 37-71

Unti-5: Dielectric Properties 72-101

Unit-6: Magnetic Properties 102-132

Block - III: Properties of Nanomaterials-II 133-155

Unit-7: Optical Properties 134-139

Unit-8: Thermal Properties 140-145

Unit-9: Mechanical Properties 146-155

Block - IV: Nano Devices and Sensors 156-197

Unit-10: Quantum Devices 157-166

Unit-11: Super Conducting Devices 167-178

Unit-12: Introduction of Nano Sensors 179-197

 • Model Question Paper 198-200

_.mdtdæ

 yÓTT<ä{Ï dü+e‘·‡s¡+ yÓTT<ä{Ï ôd$TdüºsY

»+‘·T XÊg+

»+‘·T yÓ’$<Ûä́ + ` nø£X‚s¡Tø±\T

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

 ôV’≤<äsêu≤<é

2017

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH̊yÓ÷ >±˙,

düs√«‘·ÿèwüºyÓTÆq $<ä́ n+~+#̊ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#̊ neø±XÊ\qT,

Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äTμμ

`&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS119 ZOO-T

v

$wüj·T dü÷∫ø£

ø√s¡T‡`1 : »+‘·TyÓ’$<Ûä́ + ` nø£X‚s¡Tø±\T

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 Áb˛{ÀCÀyê, bǫ̀]ô|òsê, ì&̊]j·÷

j·T÷ì{Ÿ̀ 1 : »+‘·T kÕÁe÷»´eTT ` ñb˛<ëÈ‘·eTT 1`9

j·T÷ì{Ÿ̀ 2 : Áb˛{ÀCÀyê ` kÕe÷q´ \ø£åDeTT\T, eØZø£s¡DeTT, qeT÷Hê n<Ûä́ j·TqeTT ` m©Œ¤&çj·T+,

 Áb˛{ÀCÀyê yê´<ÛäT\T 10-41

j·T÷ì{Ÿ̀ 3 : bòı]ô|òsê ` kÕe÷q´ \ø£åDeTT\T, eØZø£s¡DeTT qeT÷Hê n<Ûä́ j·TqeTT ` ôd’ø±Hé,

 bòı]ô|òsê ≈£î˝≤´ e´edüú 42-61

j·T÷ì{Ÿ̀ 4 : ì&˚]j·÷ ` kÕe÷q´ \ø£åDeTT\T, eØZø£s¡DeTT, qeT÷Hê n<Ûä́ j·TqeTT ` nØ*j·÷,

 ì&̊]j·÷˝À ãVüQs¡÷|üø£‘·. 62-89

K+&É+`2 bÕ¢{ÏôV≤ …̋à+~∏dt, ÄdtÿôV≤*à+~∏dt 90

j·T÷ì{Ÿ`5 : bÕ¢{ÏôV≤*à+B∏dt ` kÕe÷q´ \ø£åDeTT\T, eØZø£s¡DeTT, eTTK´yÓTÆq Á{ÏeT{À&Ü eT]j·TT

 dæk º̨&Ü |üsêqïJe⁄\T ` qeTTHê n<Ûä́ j·Tq+. 91-121

j·T÷ì{Ÿ̀ 6 : Ädtÿ ôV≤*à+~∏dt ` kÕe÷q´ \ø£åDeTT\T, eØZø£s¡DeTT, qeT÷Hê n<Ûä́ j·TqeTT ÄkÕÿ]dt

 \T+Á_ø±sTT&çdt, ôV≤*à+<∏é\ |üsêqïJe⁄\ nqT≈£L\qeTT\T 122-143

K+&É+`3 nHÓ*&Ü, ÄÁs√›b˛&Ü 144

j·T÷ì{Ÿ̀ 7 : nHÓ*&Ü ` kÕe÷q´ \ø£åDeTT\T, eØZø£s¡DeTT qeT÷Hê n<Ûä́ j·TqeTT ` ôV’≤s¡T&çH̊]j·÷

 Á>±qT´˝ÀkÕ, düeTK+&É $Hê´düeTT, eèø£ÿeTT\T, X¯Øs¡≈£îVü≤s¡ yêVæ≤ø£\T 144-196

j·T÷ì{Ÿ`8 : ÄÁs√›bı&Ü ̀ kÕe÷q´ \ø£åDeTT\T, eØZø£s¡DeTT, ̌ HÓ’ø√bǫ̀ sê ̀ (ô|]ù|≥dt) dü+ã+<Ûä u≤+<Ûäyê´\T

 ø°≥ø±\T ` Ä]úø£ ÁbÕeTTK´‘· 197-222

j·T÷ì{Ÿ̀ 9 : qeT÷Hê n<Ûä́ j·TqeTT ` ù|*e÷Hé 223-262

K+&É+`4 yÓTT\kÕÿ Ç¬ø’H√&Óπsà{≤, ôV≤$Tø±πs¶{≤ 263

j·T÷ì{Ÿ`10 : yÓTT\kÕÿ`kÕe÷q´ \ø£åDeTT\T, eØZø£s¡DeTT qeT÷Hê n<Ûä́ j·TqeTT `ô|ò’̋ ≤>√¢uÀkÕ 264-290

j·T÷ì{Ÿ̀ 11 : Ç¬ø’H√&Óπsà≥`kÕe÷q´\ø£åDeTT\T, eØZø£s¡DeTT, qeT÷Hên<Ûä́ j·TqeTT`@d”º]j·÷dt 291-320

j·T÷ì{Ÿ̀ 12 : ôV≤$Tø±πs¶{≤ ` kÕe÷q´ ˝ø£åDeTT\T, eØZø£s¡DeTT, qeT÷Hê n<Ûä́ j·TqeTT ` u…\H√>±¢düdt `

 dü+ã+<Ûä u≤+<Ûäe´eTT\T. 321-335

_.mdtdæ
 yÓTT<ä{Ï dü+e‘·‡s¡+ ¬s+&Ée ôd$TdüºsY

»+‘·T XÊg+
»+‘·T yÓ’$<Ûä́ + ` düø££ùds¡Tø±\T

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X¯«$<ë´\j·T+
 ôV’≤<äsêu≤<é

2018

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH˚yÓ÷ >±˙,
düs√«‘·ÿèwüºyÓTÆq $<ä́ n+~+#˚ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#˚ neø±XÊ\qT,

Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äTμμ
`&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS219 ZOO-T

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 düø£ùds¡Tø±\T, Ábı{Àø±πs¶{≤ eT]j·TT ôd’ø=¢kıºy˚T≥ 1

uÛ≤>∑+`1 : düø£ùds¡Tø±\T kÕ<Ûës¡D \ø£åD≤\T, Áb˛{Àø±πs¶{≤, ôV≤sY¶y˚Tìj·T` qeT÷Hê n<Ûä́ j·Tq+ 3`38

uÛ≤>∑+`2 : ôdbòÕ˝Àø±πs¶{≤ ` qeT÷Hê n<Ûä́ j·Tq+ ` Ä+|òæj·÷ø£‡dt 39`58

uÛ≤>∑+`3 : e]ºÁuÒ≥ kÕ<Ûës¡D \ø£åD≤\T, eØZø£s¡D eT]j·TT ôd’ø√¢kıºy˚T≥ 59`80

K+&É+`2 #˚|ü\T eT]j·TT ñuÛÑj·T#·sê\T 81

uÛ≤>∑+`4 : #˚|ü\T`kÕ<Ûës¡D \ø£åD≤\T, eØZø£s¡D— eT]j·TT &çbÕïjYT #˚|ü\T 83`99

uÛ≤>∑+`5 : kıs¡#˚|ü ` qeT÷Hê n<Ûä́ j·Tq+ 100`126

uÛ≤>∑+`6 : ñuÛÑj·T#·sê\T (Ä+|ò”_j·÷) ` kÕ<Ûës¡D \ø£åD≤\T, eØZø£s¡D, dü+‘êqbÕ\q 127`139

K+&É+`3 düØdüèbÕ\T eT]j·TT |ü≈£åî\T 1411

uÛ≤>∑+`7 : düØdüèbÕ\T`kÕ<Ûës¡D \ø£åD≤\T,eØZø£s¡D— &Ó’H√kÕsY‡—$wüdüsêŒ\T eT]j·TT $wüs¡Væ≤‘· düsêŒ\T 143`162

uÛ≤>∑+`8 : ¬ø˝À{Ïdt (‘=+&É) ` qeT÷Hê n<Ûä́ j·Tq+ 163`180

uÛ≤>∑+`9 : |ü≈£åî\T`kÕ<Ûës¡D \ø£åD≤\T, eØZø£s¡D, yÓ’Vü‰j·Tq nqT≈£L\Hê\T, |ü≈£åî\ e\dü 181`197

K+&É+`4 |ü≈£åî\T eT]j·TT ø°ås¡<ë\T 199

uÛ≤>∑+`10 : bÕe⁄s¡+ ` qeTTHê n<Ûä́ j·Tq+ 201`220

uÛ≤>∑+`11 : ø°ås¡<ë\T`kÕ<Ûës¡D \ø£åD≤\T, eØZø£s¡D, »˝≤yêdü nqT≈£L\Hê\T 221`233

uÛ≤>∑+`12 : ≈£î+<˚\T ` qeTTHê n<Ûä́ j·Tq+ 234`287

v

_.mdtdæ
 ¬s+&Ée dü+e‘·‡s¡+ eT÷&Ée ôd$TdüºsY

»+‘·T XÊg+
Jyêes¡D XÊg+, »+‘·T uÛÖ>√[ø£ XÊg+ eT]j·TT Jyê_Ûeè~∆ XÊg+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X¯«$<ë´\j·T+
 ôV’≤<äsêu≤<é

2018

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê˝…’q e<äT\Tø√e#·TÃH˚yÓ÷ >±˙, düs√«‘·ÿèwüºyÓTÆq

$<ä́ n+~+#˚ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#˚ neø±XÊ\qT, Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äT.

m+<äTø£+fÒ $<ä́ qT $T+∫q edüTÔ>∑‘· Á|üjÓ÷»qy˚TB Ò̋<äTμμ

`&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS319 ZOO-T

v

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`I Jyêes¡D XÊg+`1 1

uÛ≤>∑+ `1 : Äes¡D e´edüú ìsêàD+ eT]j·TT $<ÛäT\T, Äes¡D e´edüú s¡ø±\T ` »\ eT]j·TT
uÛÖeT´ Äes¡D\T 3-25

uÛ≤>∑+`2 : JeuÛÖeT´ s¡kÕj·Tq e\j·÷\T 26-38

uÛ≤>∑+`3 : düe÷» ìsêàD+ ` nqTÁø£eT+, »HêuÛ≤ Äes¡D XÊg+, X¯øÏÔ Á|üyêVü≤+ 39-68

K+&É+`II : Jyêes¡D XÊg+ `II 69

uÛ≤>∑+`4 : »+‘·Te⁄\ dü+ã+<Ûë\T 71-83

uÛ≤>∑+`5 : Äes¡D XÊg nqT≈£L\Hê\T 84-97

uÛ≤>∑+`6 : eq´ÁbÕDT\ dü+s¡ø£åD, uÛ≤s¡‘·<˚X¯+˝À C≤rj·TbÕs¡Tÿ\T eT]j·TT nuÛÑj·÷s¡D≤´\T 98-156

K+&É+`2 : »+‘·T uÖ>√[ø£ XÊg+ - III 157

uÛ≤>∑+`7 : »+‘·T uÛÖ>√[ø£ ÁbÕ+‘ê\T 159-173

uÛ≤>∑+`8 : yê …̋dt πsK eT]j·TT $∫Ãqï $düÔs¡D 174-183

uÛ≤>∑+`9 : K+&Ü\ ø£<ä*ø£ 184-193

K+&É+ - IV ::::: Jyê_Ûeè~∆ XÊg+ 195

uÛ≤>∑+`10 : n+&ÉeTT\ s¡ø±\T, |òü\Bø£s¡D+, >±ÁdüTº˝ÒwüHé 197-212

uÛ≤>∑+`11 : nej·Ty√‘·Œ‹Ô 213-221

uÛ≤>∑+`12 : ø√&ç ` |æ+&É‘·«#ê\T, ø°ås¡<ë\˝À »sêj·TTe⁄ dæú‹ 222-236

_.mdtdæ
 ¬s+&Ée dü+e‘·‡s¡+ Hê\T>∑e ôd$TdüºsY

»+‘·T XÊg+
ø£DJe XÊg+, nDTJe XÊg+, »qT´XÊg+ eT]j·TT Je|ü]D≤eT+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X¯«$<ë´\j·T+
 ôV’≤<äsêu≤<é

2019

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê˝…’q e<äT\Tø√e#·TÃH˚yÓ÷ >±˙, düs√«‘·ÿèwüºyÓTÆq

$<ä́ n+~+#˚ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#˚ neø±XÊ\qT, Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äT.

m+<äTø£+fÒ $<ä́ qT $T+∫q edüTÔ>∑‘· Á|üjÓ÷»qy˚TB Ò̋<äTμμ

`&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS419 ZOO-T

v

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`I ø£DJeXÊg+ 1

uÛ≤>∑+ `1 : ø£DJeXÊg ñb˛<ëÈ‘·+ eT]j·TT »+‘·Tø£D dü÷ø£åà ìsêàD+, ø£D≤+>±\ ìsêàD+
eT]j·TT $<ÛäT\T ` bÕ¢kÕà‘·«#·+, n+‘·Ø®e Á<äe´C≤\ø£+, >±*® dü+øÏ¢wüº+
eT]j·TT …̋’k˛k˛eTT\T 3-35

uÛ≤>∑+`2 : ø£D≤+>±\ ìsêàD+ eT]j·TT $<ÛäT\T ` yÓTÆÁ{Àø±+Á&çj·T, ‘êsêe‘˚ÿ+Á<ë\T,
…̋’k˛k˛eTT\T πø+Á<äø£+, eT]j·TT Áø√yÓ÷k˛eTT\T 36-62

uÛ≤>∑+`3 : ø£D$uÛÑ»q, dü+jÓ÷>∑ ;» »qq+, nìùwø£ »qq+ 63-84

K+&É+`II : nDTJe XÊg+ 85

uÛ≤>∑+`4 : πø+Á<äø±e÷¢\T ` DNA ìsêàD+, RNA ìsêàD+, DNA Á|ü‹ø£è‹ 87-108

uÛ≤>∑+`5 : e÷+düø£è‘·TÔ\ dü+X‚¢wüD ` nqT Ò̋Kq+, nqTyê<ä+ 109-115

uÛ≤>∑+`6 : »qT´Áø£eT‘· ` »qT´dü+πø‘·+, ˇô|sêHé uÛ≤eq 116-130

K+&É+ `̀̀̀̀III : »qT´XÊg+ 131

uÛ≤>∑+`7 : yÓT+&É̋ Ÿ nqTe+•ø£ dü÷Á‘ê\T eT]j·TT yÓT+&É̋ Ÿ ø±ì nqTe+•ø£ dü÷Á‘ê\T,

düVü≤\>∑ï‘· $ìeTj·T+, *+>∑ìsê∆s¡D eT]j·TT *+>∑ düVü≤\>∑ï‘· nqTe+•ø£‘· 133-176

uÛ≤>∑+`8 : ñ‘·Œ]es¡ÔHê\T : Áø√yÓ÷k˛eTT\ ñ‘·Œ]es¡ÔHê\T ` ‘=\–+|ü⁄\T, kÕúqÁuÛÑ+X̄+,

$˝Àe÷\T, Á|ü‹kÕú|üq, mqT´bÕ¢sTT&ç eT]j·TT bÕ*bÕ¢sTT&ç. 177-199

uÛ≤>∑+`9 : JeÁøÏj·T\ n+‘·:dæ‡<ä∆ <√cÕ\T, ˇø£ »qT´e⁄ / bÕ*ô|ô|ºÌ&é. 200-209

K+&É+ - - - - - IV ::::: |ü]D≤eT+ 211

uÛ≤>∑+`10 : Je Ä$sê“¤e+ eT]j·TT Je|ü]D≤eT dæ<ë∆+‘ê\ ñb˛<ëÈ‘·+: ˝≤e÷sYÿ,

ìjÓ÷˝≤e÷sYÿ, &Ü]«Hé, ìjÓ÷&Ü]«Hé, Ä<ÛäTìø£ ø£èÁ‹eT dæ<ë∆+‘·+. 213-229

uÛ≤>∑+`11 : Je|ü]D≤e÷ìøÏ Á|ü‘̊´ø£ ì<äs¡ÙHê\T : •˝≤C≤\ s¡ø±\T,

•˝≤C≤\ &̊{Ï+>¥, e÷qe⁄&ÉT eT]j·TT >∑TÁs¡+ |ü]D≤eT+. 230-266

uÛ≤>∑+`12 : C≤‹uÛ≤eq : $eø£Ô‘· ` dü+uÛÀ>∑ |üPs¡« eT]j·TT dü+uÛÀ>∑ nq+‘·s¡ j·÷+Árø£‘·,

C≤‘·T\ ñ‘·Œ‹Ô ` $<ÛëHê\T 267-278

e÷~] |üØøå± |üÁ‘·+ 279-281

B.Sc.
SECOND YEAR SEMESTER-IV

ZOOLOGY

SKILL ENHANCEMENT ELECTIVE COURSE-SEE-1

APICULTURE

“We may forgo material benefits of civilization, but we cannot forgo our right
and opportunity to reap the benefits of the highest education to the fullest extent

as the education is the greatest material benefit”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD
2019

UG419 SEE(1)-ZOO-E

CONTENTS

Block/Unit Title Page

BLOCK- I BEE COLONY MAINTENANCE

Unit –1 : Bee species and Distribution...….…….1 - 15

Unit –2 : Life history and Hive………………......................................………....16 - 32

Unit –3 : Bee Keeping Equipment..33 - 40

Unit– 4 : Harvesting and Processing of Honey...………………............................41 - 57

BLOCK -II APICULTURE MANAGEMENT

Unit –5 : Bee Diseases ……………...………..58 – 72

Unit –6 : Pests and Parasites…………………………............................……......73 - 78

Unit –7 : Products of Apiculture Industry and its uses….…………..…….….....79 – 87

Unit –8 : Economics...….…......88 – 92

 Model Question Paper……………………...………......…….…….…..93- 94

B.Sc.
SECOND YEAR SEMESTER-IV

ZOOLOGY

SKILL ENHANCEMENT ELECTIVE COURSE-SEE-2

VERMICULTURE

“We may forgo material benefits of civilization, but we cannot forgo our right
and opportunity to reap the benefits of the highest education to the fullest extent

as the education is the greatest material benefit”

 Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD
2019

UG419 SEE(2)-ZOO-E

CONTENTS

Block/Unit Title Page

BLOCK- I VERMI COMPOSTING

Unit –1 : Selection of Site and Earthworms...….…….1 - 16

Unit –2 : Composting Systems and Techniques.....................................………....17 - 28

Unit - 3 : Bedding...29 - 41

Unit– 4 : Essential Parameters of Vermiculture….......................................…..….42 - 51

BLOCK -II MANAGEMENT AND ECONOMICS

Unit –5 : Harvesting...………..52 – 61

Unit –6 : Worm Composting Pests and its Management..........................……......62 - 69

Unit –7 : Economic Importance of Vermiculture......………………..…….…......70 - 78

Unit –8 : Economics...….….......79 - 85

 Model Question Paper……………………...………......…….…….…..86- 87

_.mdtdæ

 eT÷&Ée dü+e‘·‡s¡+ ◊<äe ôd$TdüºsY

»+‘·T XÊg+

X̄Øs¡<Ûäs¡àXÊg+ eT]j·TT Jes¡kÕj·Tq XÊg+

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

 ôV’≤<äsêu≤<é

2020

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH̊yÓ÷ >±˙, düs√«‘·ÿèwüºyÓTÆq

$<ä́ n+~+#̊ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#̊ neø±XÊ\qT, Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äT.

m+<äTø£+fÒ $<ä́ qT $T+∫q edüTÔ>∑‘· Á|üjÓ÷»qẙT~ Ò̋<äTμμ

 `&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS 519 ZOO -T

V

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 X¯Øs¡ <Ûäs¡àXÊg+ ` I 1

uÛ≤>∑+`1 : Js¡íÁøÏj·T 3`17

uÛ≤>∑+`2 : XÊ«düÁøÏj·T 18`31

uÛ≤>∑+`3 : Á|üdüs¡D 32`49

K+&É+`2 X¯Øs¡ <Ûäs¡àXÊg+ ` II 51

uÛ≤>∑+`4 : $düs¡®q 53`62

uÛ≤>∑+`5 : ø£+&És¡ dü+ø√#·+ 63`80

uÛ≤>∑+`6 : Hê&û Á|ü#√<äq+ 81`97

K+&É+`3 n+‘·:ÁkÕeø£ Á>∑+<∏äT\T eT]j·TT m+C…’eTT\T 99

uÛ≤>∑+`7 : n+‘·: ÁkÕeø£ e´edüú 101`121

uÛ≤>∑+`8 : Á<äyê_Ûdüs¡D Áø£eT‘· 122`131

uÛ≤>∑+`9 : m+C…’eTT\T 132`133

K+&É+`4 Jes¡kÕj·Tq XÊg+ eT]j·TT JyêDTe⁄\T 139

uÛ≤>∑+`10 : |æ+&ç |ü<ësêú\T 141`159

uÛ≤>∑+`11 : e÷+düø£è‘·TÔ\T 160`172

uÛ≤>∑+`12 : *|æ&ÉT¢ 173`180

e÷~] |üØøå± Á|üÁ‘·+ 181`182

I

i

B.Sc.
SECOND YEAR SEMESTER-V

ZOOLOGY

PRINCIPLES OF AQUACULTURE

DISCIPLINE SPECIFIC ELECTIVE COURSE-A

“We may forgo material benefits of civilization, but we cannot forgo our right
and opportunity to reap the benefits of the highest education to the fullest extent

as the education is the greatest material benefit”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD
2020

BS519ZOO (DSE-A)-E

v

CONTENTS

Block/Unit Title Page

BLOCK- I BIOLOGY OF FISHES

Unit –1 : Biology of Fishes..…….......................………………….………………..1-15

Unit –2 : Edible Aquatic Forms..……………................16-33

Unit- 3 : Life History of Cultivated fish and prawns…..………………………….34-42

BLOCK -II FISHERY SCIENCE

Unit –4 : Migration of Fishes……………………………………………………….43-50

Unit –5 : Post Harvest Technology………………………………………………....51-62

Unit –6 : Crafts and Gears…………………………………………………………. 63-78

BLOCK- III FISH CULTURE SYSTEMS

Unit –7 : Composite and Air Breathing Fish Culture………………………. ……..79-88

Unit –8 : Fresh water Culture Systems……………………….. ………………….89-114

Unit –9 : Coastal Aquaculture and Mariculture....……………………………….115-128

BLOCK -IV FISH FARM MAINTENANCE

Unit –10 : Farm Pond and Management.…. ……………………………………..129-149

Unit –11 : Fish Nutrition......………………………………………. …… ……....150-157

Unit –12 : Fish Diseases…………...158-171

 MODEL QUESTION PAPER ... 172

_.mdtdæ

 eT÷&Ée dü+e‘·‡s¡+ ◊<äe ôd$TdüºsY

»+‘·TXÊg+

 &çdæ|æ¢Hé ôdŒdæ|òæø̆ m\øÏºyé ø√s¡T‡ ` m

 |ü≥Tº |ü]ÁX̄eT

 &Üˆˆ _.ÄsY. n+uÒ<äÿsY kÕs¡«Á‹ø£ $X̄«$<ë´\j·T+

 ôV’≤<äsêu≤<é

2020

ªªeTq+ Hê>∑]ø£‘· düeT≈£L]Ãq edüTÔ>∑‘· Á|üjÓ÷»Hê …̋’q e<äT\Tø√e#·TÃH̊yÓ÷ >±˙, düs√«‘·ÿèwüºyÓTÆq

$<ä́ n+~+#̊ |òü̋ ≤\qT dü+|üPs¡í+>± nqTuÛÑ$+#̊ neø±XÊ\qT, Vü≤≈£îÿqT e÷Á‘·+ ø√˝ÀŒ≈£L&É<äT.

m+<äTø£+fÒ $<ä́ qT $T+∫q edüTÔ>∑‘· Á|üjÓ÷»qẙT~ Ò̋<äTμμ

 `&Üˆˆ_.ÄsY.n+uÒ<äÿsY

BS 519 ZOO DSE (A) - T

V

$wüj·T dü÷∫ø£

K+&ÉeTT / uÛ≤>∑+ bÕsƒê´+X¯+ ù|õ.HÓ+.

K+&É+`1 kÕ<ës¡D |ü≥Tº|ü]ÁX¯eT 1

uÛ≤>∑+`1 : |ü≥Tº|ü]ÁX¯eT #·]Á‘· 3`9

uÛ≤>∑+`2 : |ü≥Tº|ü⁄s¡T>∑T\ s¡ø±\T 10`22

uÛ≤>∑+`3 : eT\“Ø eØZø£s¡D 23`34

K+&É+`2 eT\“Ø kÕ>∑T eT]j·TT πøåÁ‘· ìs¡«Vü≤D 35

uÛ≤>∑+`4 : eT\“Ø ñ‘·Œ‹Ô 37`57

uÛ≤>∑+`5 : kÕ>∑T |ü<ä›‘·T\T 58`83

uÛ≤>∑+`6 : eT\“Ø yê´<ÛäT\T eT]j·TT N&É\T 84`101

K+&É+`3 |ü≥Tº|ü⁄s¡T>∑T JeXÊg+ 103

uÛ≤>∑+`7 : |ü≥Tº|ü⁄s¡T>∑T JeXÊg+ 105`131

uÛ≤>∑+`8 : |ü≥Tº|ü⁄s¡T>∑T b˛wüD eT]j·TT |ü≥TºÁ>∑+~∏ 132`139

uÛ≤>∑+`9 : |ü≥Tº |ü⁄s¡T>∑T\ ô|+|üø£+ 140`182

K+&É+`4 ô|+|üø£+ eT]j·TT Ø*+>∑T kÕ+πø‹ø£‘· 183

uÛ≤>∑+`10 : |ü≥Tº|ü⁄s¡T>∑T yê´<ÛäT\T eT]j·TT N&É\T 185`202

uÛ≤>∑+`11 : |ü≥Tºø±j·T\ Ø*+>¥ 203`233

uÛ≤>∑+`12 : eTT&ç |ü≥Tº 234`253

e÷~] |üØøå± |üÁ‘·+ 254`255

BS 619 ZOO-T

VI

I I

 (Antibodies)

 II II

 III I

 (Manipulations)

 IV II

 (Transgenesis)

v

i

B.Sc.
THIRD YEAR SEMESTER-VI

ZOOLOGY

FISH GENETICS AND SEED TECHNOLOGY

DISCIPLINE SPECIFIC ELECTIVE COURSE-C

“We may forgo material benefits of civilization, but we cannot forgo our right
and opportunity to reap the benefits of the highest education to the fullest extent

as the education is the greatest material benefit”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD
2020

BS619ZOO-(DSE-C)E

v

CONTENTS

Block/Unit Title Page

BLOCK- I FISH GENETICS-I

Unit –1 : Chromosomes in Fishes.......................………………….………………….1- 9

Unit –2 : Inheritance of Qualitative Morphological Traits in Fish............................10-23

Unit- 3 : Inheritance of Quantitative Traits in Fish..............……………………….24-30

BLOCK -II FISH GENETICS-II

Unit –4 : Chromosome Manipulation…….…………………….…….…………….31-42

Unit –5 : Transgenic Fish Production……………………………………………....43-54

Unit –6 : Cryopreservation of Gametes…………………………………………….55-65

BLOCK- III SEED TECHNOLOGY-I

Unit –7 : Fish Seed Collection……………………..………………………. ……..66-72

Unit –8 : Bundh breeding………………………..…………... ……………………73-79

Unit –9 : Induced breeding………………………......……………………………..80-91

BLOCK -IV SEED TECHNOLOGY-II

Unit –10 : Carp hatcheries, transportation of breeders and seed ………………….92-114

Unit –11 : Shrimp Hatchery technology ..…………………………. …………...115-136

Unit –12 : Fishery institutes and extension in India ……….................................137-143

 MODEL QUESTION PAPER .. 144

BS 619 ZOO DSE (D) -T

2020

I:

II: I

III: II

IV:III

iv

BS127 STAT-E

B.Sc.

FIRST YEAR SEMESTER - I

STATISTICS

DESCRIPTIVE STATISTICS &
PROBABILITY

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the

highest education to the fullest extent…”

Dr.B.R.Ambedkar

CONTENTS

BLOCK/UNIT TITLE PAGE

Block-I: Data 1

Unit-1: Method of Collection and Editing of Primary Data 3-13

Unit-2: Method of Collection and Editing of Secondary Data 14-21

Unit-3: Classification and Tabulation of the Data 22-38

Block-II: Measures of Central Tendency and Dispersion 39

Unit -4: Mean, Median, Mode, GM, HM 41-71

Unit -5: Range, QD, MD, SD 72-95

Unit -6: Moments, Central and Non-central Moments, Skewness 96-113

Block-III: Addition Rule 115

Unit - 7: Definition and Basic Concepts 117-130

Unit - 8: Addition Theorem of Probability 131-141

Unit - 9: Some More Important Theorems 142-147

Block-IV: Baye’s Theorem 149

Unit - 10: Conditional Probability 151-158

Unit - 11: Independent Events 159-169

Unit - 12: Baye’s Theorem 170-176

Model Examination Question Paper 177-180

IV

BS227 STAT - E

B.Sc.
FIRST YEAR SEMESTER - II

STATISTICS

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

“We may forgo material benefits of civilization, but we cannot
forgo our right and opportunity to reap the benefits of the

highest education to the fullest extent…”

Dr.B.R.Ambedkar

MATHEMATICAL EXPECTATION

&

MOMENT INEQUALITY

CONTENTS

BLOCK/UNIT TITLE PAGE

Block-I: Random Variables 185

Unit-1: Definition –discrete and continuous random variables 187 - 194

Unit- 2: Probability mass function, Probability density function and distribution 195 - 215

functions

Unit-3: Transformation of one-dimensional random variable. 216 - 228

Block - II: Bivariate Random Variables 229

Unit-4: Bivariate Distribution & Properties 231 - 238

Unit-5: Joint, Marginal and Conditional Distribution 239 - 246

Unit-6: Independence of Random Variables 247 - 251

Block - III: Expectation, Moments and co-variance 253

Unit-7: Expectation of Function of Random Variable 255 - 266

Unit-8: Central Moments and Covariance 267 - 277

Unit-9: Addition and Multiplication Theorems 278 - 284

Block - IV: Generating Functions 285

Unit-10: Moment generating function and Cumulant generating function 287 - 301

Unit- 11: Probability Generating function and Characteristic Generating Function 302 - 311

Unit-12: Cauchy –Schwartz inequality 312 - 317

Model Question Paper 318 - 320

IV

B.Sc.

DISCRETE DISTRIBUTIONS

STATISTICS

SECOND YEAR SEMESTER – III

“We may forego material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2019

BS 327 STAT – E

IV

C O N T E N T S

Block/Unit No. Title Page No.

Block - I: Discrete Distributions - I 1-42

Unit-1: Bernoulli and Binomial Distributions 2-22

Unit-2: Poisson Distribution 23-36

Unit-3: Discrete Uniform Distribution 37-42

Block - II: Discrete Distributions - II 43-69

Unit-4: Negative Binomial distribution 44-53

Unti-5: Geometric Distribution 54-62

Unit-6: Hypergeometric Distribution 63-69

Block - III: Applications - I 70-93

Unit-7: Applications of Bernoulli and Binomial Distributions 71-80

Unit-8: Application of Poisson Distribution 81-87

Unit-9: Applications of Negative Binomial Distribution 88-93

Block - IV: Applications - II 94-118

Unit-10: Problems on Hypergeometric Distribution 95-100

Unit-11: Problems on Uniform Distribution 101-107

Unit-12: Miscellaneous Problems on Discrete Distribution 108-118

Model Question Paper 119-207

B.Sc.

CONTINUOUS DISTRIBUTIONS

STATISTICS

SECOND YEAR SEMESTER – IV

“We may forego material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

BS 427 STAT – E

IV

C O N T E N T S

Block/Unit No. Title Page No.

Block - I: Continuous Distributions - I 1-38

Unit-1: Rectangular Distribution 2-9

Unit-2: Normal Distribution - I 10-27

Unit-3: Normal Distribution - II 28-38

Block - II: Continuous Distribution – II 39-70

Unit-4: Gamma Distribution 40-49

Unti-5: Beta Distribution 50-62

Unit-6: Cauchy Distribution 63-70

Block - III: Applications - I 71-109

Unit-7: Applications of Rectangular Distribution 72-80

Unit-8: Applications of Normal Distribution – I 81-97

Unit-9: Applications of Normal Distributions – II 98-109

Block - IV: Applications - II 110-134

Unit-10: Applications of Gamma Distribution 111-116

Unit-11: Applications of Beta Distribution 117-124

Unit-12: Applications of Cauchy Distribution 125-134

 • Model Question Paper 135-138

• Normal Distribution Tables 139-140

B.Sc.

STATISTICAL DATA ANALYSIS
USING MS EXCEL

STATISTICS

SKILL ENHANCEMENT ELECTIVE COURSE-SEE-I

SECOND YEAR SEMESTER – IV

“We may forgo material benefits of civilization, but we cannot
forego our right and opportunity to reap the benefits of the

highest education to the fullest extent…”
Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

UG 405 SEE (STAT 1) –E

IV

C ON TE NT S

Block/Unit No. Title Page No.

Block - I: Excel and Functions 1-52

Unit-1: Introduction to Excel 2-14

Unit-2: Basic Mathematical Functions 15-31

Unit-3: Statistical Functions - Measures of Central Tendency

MEAN, MEDIAN, MODE, GEOMETRIC MEAN(GM),

HARMONIC MEAN(HM) 32-41

Unit-4: Statistical Function - Measures of DISPERSION, SKEWNESS,

KURTOSIS, COVARIANCE 42-52

Block - II: Built-in Functions 53-102
RSQ, NORDIST etc,

Unti-5: RSQ, RANK, FORECAST, TRIMMEAN functions 54-64

Unit-6: NORMDIST, NORMINV, NORMSDIST, NORMSINV functions 65-72

Unit-7: CONFIDENCE , VAR, ZTEST, TDIST, TINV, tTEST functions 73-89

Unit-8: FDIST, FINV, CHIDIST, CHIINV, CHITEST functions 90-102

 • Model Question Paper 103-105

B.Sc.

STATISTICAL TECHNIQUES FOR
RESEARCH METHODS

STATISTICS

SKILL ENHANCEMENT ELECTIVE COURSE - SEE-2

SECOND YEAR SEMESTER – IV

“We may forgo material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2020

UG 405 SEE (STAT2)–E

IV

C ON TE NT S

Block/Unit No. Title Page No.

Block - I: Research and Sampling 1-42

Unit-1: Introduction to Research 2-10

Unit-2: Research Process 11-20

Unit-3: Sampling Designs 21-29

Unit-4: Data Collection and Presentation 30-42

Block - II: Model and Report 43-90

Unti-5: Data Analysis 44-56

Unit-6: Models and Model Building 57-63

Unit-7: Interpretation and Report Writing 64-80

Unit-8: Presentation of Reports 81-90

 • Model Question Paper 91-92

B.Sc.

CORRELATION,
REGRESSION, SAMPLING

STATISTICS

THIRD YEAR SEMESTER – V

“We may forgo material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

BS 527 STAT – E

IV

C ON TE NT S

Block/Unit No. Title Page No.

Block - I: Correlation 1-52

Unit-1: Correlation 2-19

Unit-2: Rank Correlation 20-36

Unit-3: Correlation Ratio 37-52

Block - II: Correlation, Regression 53-79

Unit-4: Simple Linear Regression 54-66

Unti-5: Regression for 3 Variables 67-73

Unit-6: Multiple and Partial Correlations 74-79

Block - III: Data Analysis 80-115

Unit-7: Introduction to Categorical Data Analysis 81-91

Unit-8: Why Categorical data Analysis ? 92-97

Unit-9: Independence and Association of Attributes 98-115

Block - IV: Sampling 116-152

Unit-10: Simple Random Sampling 117-129

Unit-11: Stratified Random Sampling 130-146

Unit-12: Systematic Sampling 147-152

 • Model Question Paper 153-156

B.Sc.

STATISTICS
DISCIPLINE SPECIFIC ELECTIVE COURSE - A

DESIGN OF EXPERIMENTS

THIRD YEAR SEMESTER – V

“We may forgo material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

BS 527 STAT DSE (A)-E

IV

CONTENTS

BLOCK / Unit Title Page

BLOCK-I Analysis of Variance one-way Classification 1-41

Unit-1 : Introduction, Cochran’s Theorem 2-16

Unit-2 : Analysis of Variance one-way Classification Mathematical 17-29
Model, Estimation of sum of squares

Unit-3 : Analysis of Variance One way classification F-Test 30-41

BLOCK-II Anova Two - way classification 42-75

Unit-4 : Introduction - Analysis of Variance Two-way Classification 43-48

Unit-5 : Anova Two-way classification - Mathematical Model, 49-62
Estimation of Sum of Squares.

Unit-6 : Analysis of Variance, Two-Way Classification, F- Test 63-75

BLOCK-III Analysis of Design 76-112

Unit–7 : Principles of Experimentation 77 - 89

Unit–8 : Completely Randomized Design (CRD) 90 - 99

Unit–9 : E(MS), F-Test 100 - 112

BLOCK-IV Randomised Block Design and Latin Square Design 113-162

Unit–10 : Introduction to RBD 114 - 122

Unit-11 : Analysis and Model Interpretation, E(MS), F-Tests, One Missing 123- 141

Observation and Its Estimation in RBD

Unit-12 : Latin Square Design 142 - 162

Practical Model Question Paper 163 - 166

“We may forgo material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”
Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

B.Sc.

STATISTICS
DISCIPLINE SPECIFIC ELECTIVE COURSE - B

BIOSTATISTICS

THIRD YEAR SEMESTER – 5

BS 527 STAT DSE (B) – E

IV

CONTENTS

BLOCK / Unit Title Page

BLOCK-I Bio Assay 1-38

Unit-1 : Purpose and structure of biological Assay, Types of biological assays 2-14

Unit-2 : Direct Assays, Ratio Estimates 15-27

Unit-3 : Asymptotic Distributions, Feller’s theorem and Regression 28-38
 approach to estimate dose – response and relationships

BLOCK-II Logit & Profit Approaches 39-121

Unit-4 : Logit and Probit approaches when dose response 40-52
 curve for standard preparation is unknown, quantal responses

Unit-5 : Methods of estimation of parameters, estimation of extreme quantiles 53-78

Unit-6 : Dose allocation schemes, polychotomous quantal response, 79-121
 estimation of points on the quantal response function

BLOCK-III Statistical Genetics - I 122-152

Unit–7 : Concepts of Gene and Genotypes 123 - 129

Unit–8 : Mendel’s & Hardy Weinberg Laws 130 -139

Unit–9 : Estimation of Allele Frequency (Dominant/ Codominant Cases), 140 - 152
 Multiple Alleles

BLOCK-IV Statistical Genetics - II 153-181

Unit–10 : Approach to Equilibrium for X-Linked Gene 154 - 161

Unit-11 : Natural Selection, Mutation and Genetic Drift 162 - 175

Unit-12 : Equilibrium When Both Natural Selection and Mutation Operative 176 - 181

 Model Examination Question Paper 182 - 185

2021

BS 627 STAT – T

IV

I

II

III

Z-

t- t-
F-

IV

U

B.Sc.

STATISTICS
DISCIPLINE SPECIFIC ELECTIVE COURSE - C

OPERATIONS RESEARCH

THIRD YEAR SEMESTER – 6

“We may forgo material benefits of civilization, but we
cannot forego our right and opportunity to reap the benefits

of the highest education to the fullest extent…”

Dr. B. R. Ambedkar

Dr. B. R. AMBEDKAR OPEN UNIVERSITY
HYDERABAD

2021

BS 627 STAT DSE (C)-E

IV

CONTENTS

BLOCK / Unit Title Page

BLOCK-I Linear Programming Problems 1-49

Unit-1 : Formulation of LPP 2-15

Unit-2 : Graphical Method 16-36

Unit-3 : Theorems Related to Optimal Vertex Point 37-49

BLOCK-II Surplus etc variables, BIG M-Method 50-109

Unit-4 : Slack, Surplus, Artificial Variables 51-69

Unit-5 : Big-M Method 70-91

Unit-6 : Two Phase Simplex Method 92-109

BLOCK-III DUAL, TP 110-170

Unit–7 Dual Simplex Method: 111 - 132

Unit–8 : Initial Basic Feasible Solution (BFS) By NWC, Least Cost Method,VAM 133 -152

Unit–9 : Unbalanced Transportation Problem 153 - 170

BLOCK-IV Assignment Problem 171-212

Unit–10 : Assignment Problem Hungarian Method Travelling Salesman Problem 172 - 193

Unit-11 : Two Machine Job Sequencing Problem 194 - 204

Unit-12 : Three Machine Job Sequencing Problems 205 - 212

Model Question Paper 213 - 218

:

THIRD YEAR

BS 627 STAT DSE (D) � E

B.Sc.

STATISTICS

DISCIPLINE SPECIFIC ELECTIVE COURSE - D

STATISTICALCOMPUTING

CouCA

SEMESTER �6

USING C/C++ PROGRAMMING

3.

MBEDKAR OPEN UNIVE

UCATION AT YOUR

ERSITY

DoORSTEP

�We may forgo material benefits of civilization, but we cannot forgo our right

and opportunity to reap the benefits of the highest education to the fullest

extent s the educaution is the greatest material benefit"

-Dr. B.R. Ambedkar

Dr. B.R. AMBEDKAR OPEN UNIVERSITY

HYDERABAD

2022

mt

lnt-7:

RI OCA :CONTROL STRUIURES

lnt-9:

I'omDean

Ivotion olLangage

Unit-10:

Haws of CLangue

BLOCK : DERIVED DATATYPES

Unit-11:

Unit-12:

Ilow of Control

Funcons

Unt-8: Structures and Unions

Ponters and Strmgs

Arrays

BLOCK - IV: INTRODUCTION TO C+t

Files

Classes and Objects

Inheritance

Polymorphism

Model Examination (Question Paper

